中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (1): 104-111.DOI: 10.3969/j.issn.1674-0696.2025.01.13

• 交通+大数据人工智能 • 上一篇    

基于模糊MPC的异质车队协同式自适应巡航控制策略

冯莉,高若菡   

  1. (重庆交通大学 交通运输学院,重庆 400074)
  • 收稿日期:2024-04-11 修回日期:2024-07-29 发布日期:2025-01-20
  • 作者简介:冯莉(1991—),女,重庆人,副教授,博士,主要从事自动驾驶控制和故障诊断方面的研究。E-mail:fengli_cqu@126.com 通信作者:高若菡(1999—),女,重庆人,硕士研究生,主要从事车辆工程方面的研究。E-mail:13983069732@163.com
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1456);重庆市教育委员会科学技术研究项目(KJZD-K202300705);重庆市高等教育教学改革研究项目(233239)

Collaborative Adaptive Cruise Control Strategy for Heterogeneous Fleet Based on Fuzzy MPC

FENG Li, GAO Ruohan   

  1. (College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2024-04-11 Revised:2024-07-29 Published:2025-01-20

摘要: 以具备不同动力学参数电动汽车组成的异质车队作为研究对象,以满足混合异质车流的跟车性、安全性与舒适性等性能为目标,提出了一种利用模糊控制理论改变原本MPC固定权重的协同式自适应巡航控制系统(CACC)。通过构建协同式自适应巡航控制系统的车辆间纵向动力学模型,搭建离散状态空间等式,创建相应的目标优化函数并进行约束求解,设计模糊规则改变MPC相关性能的固定权重系数,最后通过构造Simulink和CarSim的联合仿真模型进行测试。试验结果表明,在跟随行驶工况下,改进后的模糊MPC控制算法比传统的MPC控制效果更明显,能更好响应异质车队跟车性、安全性与舒适性等性能,更满足实际车流行驶情况。

关键词: 车辆工程;异质车队;协同式自适应巡航控制;模糊控制;模型预测控制

Abstract: Taking the heterogeneous fleet consisting of electric vehicles with different dynamic parameters as the research object, a cooperative adaptive cruise control (CACC) system utilizing fuzzy control theory to modify the fixed weights of the original model predictive control (MPC) was proposed, which aimed to meet the performance requirements of the mixed heterogeneous traffic flow such as following, safety and comfort. The longitudinal dynamic models between the vehicles in the CACC system were constructed, and a discrete-state space equation was established. Corresponding objective optimization functions were created and solved with constraints. Fuzzy rules were designed to change the fixed weight coefficients of MPC related performance. Finally, a joint simulation model combining Simulink and CarSim was constructed for testing. Experiment results demonstrate that the improved fuzzy MPC control algorithm outperforms the traditional MPC control algorithm in terms of control effect under the following driving conditions, which can better respond to the performance of heterogeneous fleet such as following, safety and comfort, and better meet the actual driving situation of vehicles.

Key words: vehicle engineering; heterogeneous fleet; cooperative adaptive cruise control; fuzzy control; model predictive control

中图分类号: