中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (5): 112-120.DOI: 10.3969/j.issn.1674-0696.2025.05.15

• 交通+大数据人工智能 • 上一篇    

基于改进PID搜索算法的列车节能运行优化研究

侯涛,兰小斌   

  1. (兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070)
  • 收稿日期:2024-07-30 修回日期:2024-10-25 发布日期:2025-05-23
  • 作者简介:侯涛(1975—), 男,四川中江人,教授,博士,主要从事列车运行控制方面的研究。E-mail:houtaoht@lzjtu.cn 通信作者:兰小斌(1999—),男,甘肃平凉人,硕士,主要从事列车节能优化方面的研究。E-mail:12221489@stu.lzjtu.edu.cn
  • 基金资助:
    甘肃省重点研发计划-工业类项目(23YFGA0049);甘肃省自然科学基金项目(22JR5RA358)

Energy-Saving Operation Optimization of Train Operation Based on Improved PID Search Algorithm

HOU Tao,LAN Xiaobin   

  1. (School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
  • Received:2024-07-30 Revised:2024-10-25 Published:2025-05-23

摘要: 高速列车节能运行优化即在满足约束条件的基础上,通过调整驾驶策略,实现节能控制。针对高速列车进一步节能优化问题,提出了一种基于改进PID搜索算法的列车节能运行优化方法。首先,为提升算法的寻优性能,采用sine -logistic融合混沌映射来初始化种群,利用模糊PID控制实现参数的自适应调节,使用动态选择T分布扰动策略增加随机信息,通过透镜成像反向学习方式丰富种群多样性,引入SA选择机制来扩大搜索范围,并通过基准测试函数验证了该方法在收敛精确度和收敛速度方面的优越性。然后,采用列车均质棒建模,以最小能耗、准时和舒适度为优化目标,建立列车节能运行优化模型。最后,基于CRH3C型列车参数,运用渭南北站至华山北站的实际线路数据进行仿真。结果表明:通过改进PID搜索算法优化,相比于列车节时和四阶段运行模式,在一般限速下,列车分别节能17.9%和9.9%;在临时限速下,列车分别节能10.8%和9.0%,并对列车临时进站时间调整情况进行了分析,验证了该方法的有效性和鲁棒性。研究结果为优化列车运行能耗提供参考。

关键词: 车辆工程;高速列车;驾驶策略;改进PID搜索算法;临时限速;节能控制

Abstract: Optimization of energy-saving operation during high-speed train operation is to achieve energy-saving control by adjusting the train driving strategy while satisfying the constraints. Targeting the further energy-saving optimization issue of high-speed trains, a train energy consumption optimization method based on improved PID search algorithm was proposed. To enhance the optimization performance of the algorithm, sine-logistic fusion chaotic mapping was utilized for initializing the colony, fuzzy PID control was employed for realizing adaptive regulation of parameters, dynamic selection of T-distribution perturbation strategy was used to increase random information, the diversity of the population was enriched by reverse learning through lens imaging, the SA selection mechanism was introduced to expand search zone, and the advantage of the proposed method in convergence accuracy and convergence speed was verified through benchmark test functions. Then, with minimum energy consumption, punctuality and comfort as optimization objectives, an energy-saving operation optimization model for trains was established by adopting train homogenization rod modeling. Finally, based on the CRH3C train parameters, the actual line data from Weinan North Station to Huashan North Station was utilized for simulation. The results show that through the improved PID search algorithm optimization, compared with the train time-saving and the four-stage operation mode, the train can save 17.9% and 9.9% energy respectively under general speed limit, and the train can save 10.8% and 9.0% energy respectively under the temporary speed limit. The adjustment of the temporary arrival time of the train has been analyzed to verify the effectiveness and robustness of the proposed method. The research results provide a reference for optimizing the energy consumption of train operation.

Key words: vehicle engineering; high-speed trains; driving strategy; improved PID search algorithm; temporary speed limits; energy-saving control

中图分类号: