[1] 王伦.论长江流域发展外向型经济的重要性和可能性[J].城市问题,1989(2):24-29.
WANG Lun. On the importance and potential of developing an outward-oriented economy in the Yangtze River basin[J]. Urban Problems, 1989(2): 24-29.
[2] LI Wenjie, DAI Jialing, XIAO Yi, et al. Estimating waterway freight demand at Three Gorges ship lock on Yangtze River by backpropagation neural network modeling[J]. Maritime Economics & Logistics, 2021, 23(3): 495-521.
[3] 邓萍, 宋莲, 黄承锋. 三峡坝区过闸船舶拥堵成本测算及对坝区货物总价值影响研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(7): 23-30.
DENG Ping, SONG Lian, HUANG Chengfeng. Estimation ofcongestion costs for lockage ship in Three Gorges Dam area and its impact on the total value of goods in the dam area[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(7): 23-30.
[3] 邓萍, 宋莲, 黄承锋. 三峡坝区过闸船舶拥堵成本测算及对坝区货物总价值影响研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(7): 23-30.
DENG Ping, SONG Lian, HUANG Chengfeng. Estimation of congestion costs for lockage ship in Three Gorges Dam area and its impact on the total value of goods in the dam area[J].Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(7): 23-30.
[4] 蒋军,舒文,黄嘉怡,等.基于无偏灰色马尔科夫模型的三峡枢纽通航运输需求量预测[J].物流科技,2022,45(7):63-67.
JIANG Jun, SHU Wen, HUANG Jiayi, et al. Forecasting of the demand for navigational transport at the Three Gorges hub based on unbiased grey Markov model[J]. Logistics Sci-Tech, 2022, 45(7): 63-67.
[5] 张义军,贾进,王广莹,等.基于GA-SVM模型的三峡过闸货运需求预测[J].综合运输,2023,45(10):149-155.
ZHANG Yijun, JIA Jin, WANG Guangying, et al. Forecast of freight demand through the Three Gorges based on GA-SVM model[J]. China Transportation Review, 2023, 45(10): 149-155.
[6] 唐龙. 基于深度学习的铁路货运量预测研究[D]. 成都: 西南交通大学, 2022.
TANG Long.Research on Railway Freight Volume Forecasting Based on Deep Learning[D].Chengdu: Southwest Jiaotong University, 2022.
[7] 张弓,韩静波,谷一凡.研判我国玉米产销变化形势确保产业链供应链稳定运行——兼析当前我国玉米供求存在的主要问题及风险点[J].价格理论与实践,2024(2):52-55.
ZHANG Gong, HAN Jingbo, GU Yifan. Analyzing the changes in production and sales of corn in China, ensuring the stable operation of the industry chain and supply chain—Analyze the main problems and risks in the current supply and demand of corn in China[J]. Price:Theory & Practice,2024(2):52-55.
[8] 叶佳. 基于产业链的电力消费预测研究——以重庆市为例[D]. 大连: 大连海事大学, 2012.
YE Jia.The Study of Electricity Consumption Forecast Based on Industry Chain—A Case Study of Chongqing [D].Dalian: Dalian Maritime University, 2012.
[9] VOORDIJK H. Logistical restructuring of supply chains of building materials and road freight traffic growth[J]. International Journal of Logistics Research and Applications, 1999, 2(3): 285-304.
[11] 尹政兴, 钱俊, 厉泽逸. 新形势下矿建材料三峡过闸运量趋势研究[J]. 人民长江, 2019, 50(12): 125-129.
YIN Zhengxing, QIAN Jun, LI Zeyi. Study on quantity trend of mining construction materialthrough Three Gorges Dam under new normal of economy[J]. Yangtze River, 2019, 50(12): 125-129.
[12] 刘晓彤. 基于遗传算法优化BP神经网络的铁路货运量预测及影响因素探究[D]. 北京: 北京交通大学, 2020.
LIU Xiaotong. Research on the Forecast of Railway Freight Volume Based on BP Neural Network Optimized by Genetic Algorithm and the Influence Factors [D].Beijing: Beijing Jiaotong University, 2020.
[13] 田晟,李成伟,黄伟等.疫情下基于GC-rBPNN模型的公路货运量预测方法[J].广西师范大学学报(自然科学版),2021,39(6):24-32.
TIAN Sheng, LI Chengwei, HUANG Wei, et al. Forecasting method of highway freight volume based on GC-rBPNN model during COVID-19 epidemic[J]. Journal of Guangxi Normal University (Natural Science Edition), 2021, 39(6): 24-32.
[14] 程肇兰,张小强,梁越.基于LSTM网络的铁路货运量预测[J].铁道学报,2020,42(11):15-21.
CHENG Zhaolan, ZHANG Xiaoqiang, LIANG Yue. Railway freight volume prediction based on LSTM network[J]. Journal of the China Railway Society, 2020, 42(11): 15-21.
[15] 王泽宇, 张志清. LSTM和GRU模型对湖北省物流需求预测性能比较研究[J]. 物流工程与管理, 2024, 46(4): 10-14.
WANG Zeyu, ZHANG Zhiqing. Comparative study of LSTM and GRU models on the prediction performance of logistic demand in Hubei Province[J]. Logistics Engineering and Management, 2024, 46(4): 10-14.
[16] 郭洪鹏, 刘斌, 肖尧. 基于Bi-LSTM网络的铁路短期货运量预测研究[J]. 铁道货运, 2022, 40(2): 52-58.
GUO Hongpeng, LIU Bin, XIAO Yao. Short-termrailway freight volume prediction based on Bi-LSTM network[J]. Railway Freight Transport, 2022, 40(2): 52-58.
[17] 邹红梅,朱成涛.基于LSTM和BP神经网络的水库入库径流中长期预测比较研究[J].水文,2024,44(4):27-31.
ZOU Hongmei, ZHU Chengtao. Comparativestudy on mid- and long-term prediction of reservoir inflow based on LSTM and BP neural network[J]. Journal of China Hydrology,2024,44(4):27-31.
[18] KUMAR R D, KUMAR S T, ALAM K S S, et al. Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models[J]. Agronomy, 2022, 12(3): 594.
[19] LI Wenjie, LUO Chun, HE Yiwei, et al. Estimating inter-regional freight demand in China based on the input-output model[J]. Sustainability, 2023, 15(12): 9808.
[20] 王桃, 刘晓玲, 吴晓磊. 基于综合立体交通网构建的平陆运河货运需求分析[J]. 水运工程, 2023(11): 88-93.
WANG Tao, LIU Xiaoling, WU Xiaolei. Freight demand analysis of Pinglu Canal based on construction of comprehensive transport network[J].Port & Waterway Engineering, 2023(11): 88-93.
[21] 梁晶, 李晶, 吕靖. 三峡枢纽过坝运输需求分析及其预测[J]. 水运工程, 2009(12): 109-113.
LIANG Jing, LI Jing,L Jing. Demand analysis and forecast on the freight transportation of Three Gorges Project[J]. Port & Waterway Engineering, 2009(12): 109-113. |