[1] WANG Jiyang, CHAI Weiheng, VENKATACHALAPATHY A, et al. A survey on driver behavior analysis from in-vehicle cameras[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10186-10209.
[2] 徐军莉, 王平, 穆振东. 融合眼动和脑电特征的疲劳驾驶检测研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(12): 7-11.
XU Junli, WANG Ping, MU Zhendong. Fatigue driving detection based on eye movement and EEG features[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(12): 7-11.
[3] YANG Haohan, LIU Haochen, HU Zhongxu, et al. Quantitative identification of driver distraction: A weakly supervised contrastive learning approach[J].IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 2034-2045.
[4] ZHANG Xuetao, ZHENG Nanning, WANG Fei, et al. Visual recognition of driver hand-held cell phone use based on hidden CRF[C]//Proceedings of 2011 IEEE International Conference on Vehicular Electronics and Safety. July 10-12, 2011, Beijing, China. IEEE, 2011: 248-251.
[5] ZHAO C H, ZHANG B L, HE J, et al. Recognition of driving postures by contourlet transform and random forests[J].IET Intelligent Transport Systems, 2012, 6(2): 161-168.
[6] MASOOD S, RAI A, AGGARWAL A, et al. Detecting distraction of drivers using convolutional neural network[J].Pattern Recognition Letters, 2020, 139: 79-85.
[7] 高尚兵, 张莹莹, 王腾, 等. 基于BiViTNet的轻量级驾驶员分心行为检测方法[J]. 重庆交通大学学报(自然科学版), 2024, 43(2): 57-64.
GAO Shangbing, ZHANG Yingying, WANG Teng, et al. A lightweight driver distraction behavior detection method based on BiViTNet[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(2): 57-64.
[8] DUAN C, GONG Y, LIAO J, et al. FRNet: DCNN for real-time distracted driving detection toward embedded deployment[J].IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9835-9848.
[9] 赵树恩,龚志坤,刘伟.基于改进MobileNet的公路行车环境安全风险源识别[J].重庆交通大学学报(自然科学版),2024,43(1):75-82.
ZHAO Shuen, GONG Zhikun, LIU Wei. Identification of safety risk sources of highway driving environment based on improved MobileNet [J].Journal of Chongqing Jiaotong University(Natural Science), 2023, 43(1): 75-82.
[10] SUN Q, CHEN J. StereoSqueezeNet: With fewer parameters but higher accuracy than SqueezeNet[J]. Neurocomputing, 2025: 129677-129683.
[11] BAHETI B, TALBAR S, GAJRE S. Towards computationally efficient and real time distracted driver detection with MobileVGG network[J].IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 565-574.
[12] QIN Binbin, QIAN Jiangbo, XIN Yu, et al. Distracted driver detection based on a CNN with decreasing filter size[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6922-6933.
[13] DE Sousa Ribeiro F, DUARTE K, EVERETT M, et al. Object-centric learning with capsule networks: A survey[J]. ACM Computing Surveys, 2024, 56(11): 1-291.
[14] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J].Computational Visual Media, 2022, 8(3): 331-368. |