中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (11): 26-35.DOI: 10.3969/j.issn.1674-0696.2025.11.04

• 现代交通装备 • 上一篇    

四维分级多重残差神经网络滚动轴承故障诊断

杜洪越1,范崇俊1,黄翔1,董绍江1,赵兴新2   

  1. (1. 重庆交通大学 机电与车辆工程学院,重庆 400074; 2. 重庆长江轴承股份有限公司,重庆 401336)
  • 收稿日期:2024-11-18 修回日期:2025-06-10 发布日期:2025-11-27
  • 作者简介:杜洪越(1975—),女,黑龙江哈尔滨人,教授,博士,主要从事混沌同步控制、机电一体化方面的研究。E-mail:du_hong_yue@163.com
  • 基金资助:
    重庆市自然科学基金创新发展联合基金项目(CSTB2024NSCQ-LZX0024);重庆市教育委员会科学技术研究项目(KJZD-K202300711);重庆市建筑科技计划项目(城科字2024第1-5号);重庆市技术创新与应用发展专项重点项目(CSTB2024TIAD-KPX0081)

Four-Dimensional Hierarchical Multiple Residual Neural Network for Rolling Bearing Fault Diagnosis

DU Hongyue1, FAN Chongjun1, HUANG Xiang1, DONG Shaojiang1, ZHAO Xingxin2   

  1. (1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Chongqing Changjiang Bearing Co., Ltd., Chongqing 401336, China)
  • Received:2024-11-18 Revised:2025-06-10 Published:2025-11-27

摘要: 针对工业场景噪声背景下轴承失效训练样本不平衡、微弱早期故障特征精确辨识困难以及多维关联性特征难以充分挖掘的问题,提出一种基于四维分级多重残差神经网络(FH-ResNeMt)的滚动轴承故障诊断方法。首先引入多维分层残差去噪模块(MHDM)作为一重残差构建单元,并有效整合自校正混合空洞卷积,实现了多尺度关联特征提取和自适应滤波;其次结合Hourglass网络构建特征增强架构(FEA)为第二重残差结构,解决了处理空间信息变换时,特征从高维空间压缩到低维空间导致的信息丢失问题;最后融合残差分裂注意力网络(ResNeSt)架构,联立跨通道多维特征相关性,并引入第三重残差结构以实现对不同维度特征的充分利用。实验结果表明:FH-ResNeMt在JNU与PU滚动轴承数据集上平均准确率分别达到99.84%和99.56%;该方法在重庆长江轴承股份有限公司轴承故障数据集(CME)上表现出收敛迅速、准确率极高的优势,为轴承的故障分析和全生命周期管理提供了重要的理论支持。

关键词: 机电工程;故障诊断;多维分层残差去噪;自校正混合空洞卷积;残差分裂注意力网络;多重残差结构

Abstract: Aiming at the problems of imbalance in the training samples for bearing failure under the background of industrial noise, difficulty in accurate identification of weak early fault features and difficulty in fully mining multi-dimensional correlation features, a fault diagnosis method of rolling bearing based on four-dimensional hierarchical multiple residual neural networks (FH-ResNeMt) was proposed. Firstly, the multi-dimensional hierarchical denoising module (MHDM) was introduced as a primary residual construction unit, and the multi-scale correlation feature extraction and adaptive filtering were realized by effectively integrating self-calibrated hybrid dilated convolution. Secondly, the feature enhanced architecture (FEA) was constructed with Hourglass network as the second residual structure, which solved the problem of information loss caused by feature compression from high-dimensional space to low-dimensional space when processing spatial information transformation. Finally, residual split-attention network (ResNeSt) was integrated to construct cross-channel multi-dimensional feature correlation and make full use of different dimensional features by introducing a third residual structure. The experimental results show that the average accuracy of FH-ResNeMt on JNU and PU rolling bearing data sets reaches 99.84 % and 99.56 %, respectively. The proposed method shows the advantages of rapid convergence and high accuracy on the bearing fault data set (CME) of Chongqing Changjiang Bearing Co., Ltd., which provides important theoretical support for bearing fault analysis and life cycle management.

Key words: mechatronics engineering; fault diagnosis; multi-dimensional hierarchical residual denoising; self-calibrated hybrid dilated convolution; residual split-attention network; multi-residue structure

中图分类号: