[1] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection
and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
[2] 肖潇,邵哲平,潘家财,等.基于AIS信息的船舶轨迹聚类模型及应用[J]. 中国航海,2015,38(2):82-86.
XIAO Xiao, SHAO Zheping, PAN Jiacai, et al. Ship trajectory clustering model based on AIS data and its application[J].
Navigation of China, 2015, 38(2): 82-86.
[3] CHEN J, LU F, PENG G. A quantitative approach for delineating principal fairways of ship passages through a strait[
J]. Ocean Engineering, 2015, 103: 188-197.
[4] 周丹,郑中义.基于AIS数据的船舶领域影响因素分析[J]. 上海海事大学学报,2016,37(2):7-11.
ZHOU Dan, ZHENG Zhongyi. Analysis of influencing factors of ship domain based on AIS data[J]. Journal of Shanghai
Maritime University, 2016, 37(2): 7-11.
[5] 甄荣,邵哲平,潘家财,等.基于AIS信息的航道内船舶速度分布统计分析[J].集美大学学报(自然科学版),2014(04):274-278.
ZHEN Rong, SHAO Zheping, PAN Jiacai, et al. Statistical analysis of distribution of ship speed within the fairway based on
AIS data[J]. Journal of Jimei University (Natural Science), 2014, 19(4): 274-278.
[6] 潘家财,姜青山,邵哲平.船舶会遇的时空数据挖掘算法及应用[J].中国航海,2010,33(4):57-60.
PAN Jiacai, JIANG Qingshan, SHAO Zheping. Ship encounter data mining algorithm[J]. Navigation of China, 2010, 33(4): 57
-60.
[7] 孟范立.利用AIS数据挖掘建立船舶到达规律模型[J]. 舰船科学技术,2016(10):28-30.
MENG Fanli. The use of AIS data mining to establish the ship arrives law model[J]. Ship Science and Technology, 2016
(10): 28-30.
[8] 潘家财,邵哲平,姜青山.数据挖掘在海上交通特征分析中的应用研究[J].中国航海,2010,33(2):60-62.
PAN Jiacai, SHAO Zheping, JIANG Qingshan. Application of data mining technology in analysis of marine traffic
characteristics[J]. Navigation of China, 2010, 33(2): 60-62.
[9] 唐存宝,邵哲平,唐强荣,等.基于AIS的船舶航迹分布算法[J]. 集美大学学报(自然科学版),2012,17(2):109-112.
TANG Cunbao, SHAO Zheping, TANG Qiangrong, et al. Vessel track distribution algorithm based on AIS[J]. Journal of Jimei
University (Natural Science), 2012, 17(2): 109-112.
[10] 宁建强,黄涛,刁博宇,等.一种基于海量船舶轨迹数据的细粒度网格海上交通密度计算方法[J]. 计算机工程与科学. 2015,37(12):
2242-2249.
NING Jianqiang, HUANG Tao,DIAO Boyu, et al. A fine grained grid-based maritime traffic density algorithm for mass ship
trajectory data[J]. Computer Engineering and Science, 2015, 37(12): 2242-2249.
[11] 刘涛,胡勤友,杨春.水上交通拥挤区域的聚类分析与识别[J].中国航海,2010,33(4):75-78.
LIU Tao, HU Qinyou, YANG Chun. Clustering analysis and identification of traffic congested waters[J]. Navigation of
China, 2010, 33(4): 75-78.
[12] 丁兆颖,姚迪,吴琳,等.一种基于改进的DBSCAN的面向海量船舶位置数据码头挖掘算法[J]. 计算机工程与科学,2015,33
(11):2061-2067.
DING Zhaoying, YAO Di, WU Lin, et al. A dock mining algorithm for massive vessel location data based on improved DBSCAN[J
]. Computer Engineering and Science, 2015, 33(11): 2061-2067.
[13] 魏照坤,周康,魏明,等.基于AIS数据的船舶运动模式识别与应用[J]. 上海海事大学学报,2016,37(2):17-22.
WEI Zhaokun, ZHOU Kang, WEI Ming, et al. Ship motion pattern recognition and application based on AIS data[J]. Journal
of Shanghai Maritime University, 2016, 37(2): 17-22.
[14] LIU Bo, DE SOUZA E N, MATWIN S, et al. Knowledge-based clustering of ship trajectories using density-based approach
[C]//2014 IEEE International Conference on Big Data. Washington: IEEE, 2014.
[15] 唐建波,邓敏,刘启亮.时空事件聚类分析方法研究[J].地理信息世界,2013,11(1):38-45.
TANG Jianbo, DENG Min, LIU Qiliang. On spatio-temporal events clustering methods[J]. Geomatics World, 2013, 11(1): 38-
45.
[16] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial
databases with noise[C]//Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96).
Portland, Oregon: AAAI, 1996.
[17] 张丽杰.具有稳定饱和度的DBSCAN算法[J].计算机应用研究,2014,31(7):1972-1975.
ZHANG Lijie. Stable saturation density of DBSCAN algorithm[J]. Application Research of Computers, 2014, 31(7): 1972-
1975.
[18] SANDER J, ESTER M, KRIEGEL H P, et al. Density-based clustering in spatial databases: the algorithm GDBSCAN and its
applications[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194.
[19] BIRANT D, KUT A. ST-DBSCAN:an algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering,
2007, 60(1): 208-221.
[20] OLIVEIRA R, SANTOS M Y, PIRES J M. 4D+SNN: a spatio-temporal density-based clustering approach with 4D similarity[
C]//2013 IEEE 13th International Conference on Data Mining Workshops. Dallas, TX, USA: IEEE, 2013.
[21] 张敏,常鹏.试论AIS在海上交通安全管理中的应用及前景[J].珠江水运,2012(23):73-75.
ZHANG Min, CHANG Peng. Application and development of AIS on marine traffic safety management[J]. Pearl River Water
Transport, 2012(23): 73-75.
[22] 胡菠,王智.水上移动业务标识码资源的管理—国际电联ITU-R M.585-4标准解读[J].中国海事,2009(3):50-53.
HU Bo, WANG Zhi. Management of maritime mobile service identities: deciphering recommendation ITU-R M.585-4[J]. China
Maritime Safety, 2009(3): 50-53. |