中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2020, Vol. 39 ›› Issue (10): 10-17.DOI: 10.3969/j.issn.1674-0696.2020.10.03

• 交通+大数据人工智能 • 上一篇    下一篇

客流量动态影响下公交智慧出行服务模型研究

刘莎,董国发,李想,曾晰   

  1. (大连理工大学 建设工程学部,辽宁 大连 116024)
  • 收稿日期:2018-11-23 修回日期:2019-06-17 出版日期:2020-10-30 发布日期:2020-11-03
  • 作者简介:刘莎(1987—),女,辽宁大连人,讲师,博士,主要从事智慧城市与智慧建造方面的研究。E-mail:sophie_liu@dlut.edu.cn 通信作者:李想(1995—),男,山东烟台人,硕士,主要从事智能交通系统方面的研究。E-mail:masterlixiang@mail.dlut.edu.cn

Intelligent Travel Service Model of Public Transportation under Dynamic Influence of Passenger Flow

LIU Sha, DONG Guofa, LI Xiang, ZENG Xi   

  1. (Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)
  • Received:2018-11-23 Revised:2019-06-17 Online:2020-10-30 Published:2020-11-03

摘要: 公交车是城镇居民出行的重要交通工具。由于受到行程时间、客流量等不确定性问题的影响,乘公交车出行的乘客经常遭遇延误。基于上述问题,针对出行者乘公交车出行全过程提出了一种可靠的出行服务模型,该模型能够确保乘客按时到达目的地并有效节约时间。模型首先使用LSTM(long short-term memory)算法预测公交行程时间,为乘客提供目标车辆;随后,模型将客流量动态变化对出行的影响纳入研究范围,通过建立模糊专家系统对公交客流量问题进行评价,为乘客制定合理的出门时间,避免客流量过大造成旅客滞留,模糊专家系统中的客流量数据由k-NN算法获得。经实际案例验证,该模型能够为出行者提供可靠的出行策略。研究结果对提升公交服务水平,发展智慧出行具有积极的推动作用。

关键词: 交通运输工程, 智能交通, 公交出行, 客流量, 行程时间预测, k-NN, 模糊专家系统

Abstract: Bus is an important means of transportation for urban residents. Being disturbed by the uncertainties of journey time, passenger flow etc., the bus travel often causes delay of passengers. To solve this problem, a reliable bus travel service model was proposed aiming at improving the whole process of bus travel. The proposed model ensured that passengers could arrive at the destination on time and save time effectively. Firstly, the LSTM (Long Short-Term Memory) algorithm was implemented to predict bus journey time, and to provide passengers with target vehicles. Secondly, the influence of dynamic passenger flow on bus travel was taken into consideration. Then, a fuzzy expert system was established to evaluate the passenger flow of public transportation, which was used for planning reasonable departure time and avoiding delay caused by large amount of passenger flow. The passenger flow data in fuzzy expert system was obtained by k-NN algorithm. The actual case shows that the proposed model can provide reliable travel strategy for travelers. The research results have a positive role in promoting bus service level and developing smart travel.

Key words: traffic and transportation engineering, intelligent transportation, bus travel, passenger flow, travel time prediction, k-NN, fuzzy expert system

中图分类号: