中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (03): 130-135.DOI: 10.3969/j.issn.1674-0696.2022.03.19

• 交通装备 • 上一篇    下一篇

跨座式单轨车载空调系统故障时间序列预测方法研究

杜子学1,蒋大卫2,吴晶3   

  1. (1. 重庆交通大学 轨道交通研究院 重庆 400074; 2. 重庆交通大学 交通运输学院 重庆 400074; 3. 重庆市轨道交通(集团)有限公司 重庆 400042)
  • 收稿日期:2020-06-08 修回日期:2020-10-16 发布日期:2022-03-24
  • 作者简介:杜子学(1962—),男,河北邯郸人,教授,博士,主要从事车辆设计方法与理论方面的研究。E-mail:aaadzx@163.com 通信作者:蒋大卫(1995—),男,江苏南通人,硕士研究生,主要从事机车车辆可靠性方面的研究。E-mail:2031160575@qq.com
  • 基金资助:
    国家自然科学基金项目(51475062)

Fault Time Series Prediction Method of Straddle Monorail On-Board Air Conditioning System

DU Zixue1, JIANG Dawei2, WU Jing3   

  1. (1. Research Institute of Rail Transit, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 3. Chongqing Rail Transit (Group) Co., Ltd., Chongqing 400042, China)
  • Received:2020-06-08 Revised:2020-10-16 Published:2022-03-24

摘要: 空调系统作为城市轨道交通的重要组成部分,直接影响到乘客乘坐的舒适性。对空调系统故障数时间序列的进行预测,有助于合理制定维修策略和零件采购方案,从而控制成本。针对空调系统故障数时间序列的预测问题,在分析故障数的周期性波动规律及变化趋势的基础上,结合Census X12季节调整方法,构建季节性自回归积分滑动平均模型(X12-ARIMA模型),并基于残差序列建立BP神经网络模型,将两个模型预测值相加得到改进的X12-ARIMA-BP模型的预测值,并与X12-ARIMA模型、BP神经网络模型、ARIMA-BP变权组合模型的预测值进行对比。以重庆轨道交通3号线为例,基于7年的空调系统月故障数据分别利用4种模型进行故障数拟合并预测。研究结果表明:相比实际值,改进的X12-ARIMA-BP模型的预测结果的平均绝对百分比误差为18.54%,比X12-ARIMA模型降低了6.38%,比BP神经网络模型降低了11.01%,比ARIMA-BP变权组合模型降低了4.75%;对比其它3种预测模型,改进的X12-ARIMA-BP模型预测效果最好。

关键词: 轨道工程;跨座式单轨;空调系统;故障数据;时间序列分析模型;故障预测

Abstract: As an important part of urban rail transit, air conditioning system directly affects the comfort of passengers. The prediction of the time series of air conditioning system faults is helpful to reasonably formulate maintenance strategy and parts procurement scheme, so as to control the cost effectively. Aiming at the prediction problem of time series of air conditioning system faults, the seasonal autoregressive integral moving average model (X12-ARIMA model) was constructed by combining with Census X12 seasonal adjustment method, which was based on the analysis of the periodic fluctuation law and change trend of the number of faults. And the BP neural network model was established based on residual series. The predicted value of the improved X12-ARIMA-BP model was obtained by adding the predicted value of the two models, and compared with the predicted values of X12-ARIMA model, BP neural network model and ARIMA-BP variable weight combination. Taking Chongqing Rail Transit Line 3 as an example, four kinds of models were used to simulate and predict the fault number, based on the monthly failure data of air conditioning system for 7 years. The research results show that compared with the actual value, the mean absolute percentage error of the improved X12-ARIMA-BP model is 18.54%, which is 6.38% lower than that of X12-ARIMA model, 11.01% lower than that of BP neural network model and 4.75% lower than that of ARIMA-BP variable weight combination model. Compared with the other three kinds of prediction models, the improved X12-ARIMA-BP model has the best prediction effect.

Key words: track engineering; straddle type monorail; air conditioning system; fault data; time series analysis model; fault prediction

中图分类号: