中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2023, Vol. 42 ›› Issue (7): 113-119.DOI: 10.3969/j.issn.1674-0696.2023.07.15

• 交通基础设施工程 • 上一篇    

基于改进熵值法的隧道照明环境评价研究

闫自海1,李硕2,甘鹏路1,梁思农1   

  1. (1. 中国电建集团华东勘察设计研究院有限公司,浙江 杭州 311122; 2. 重庆交通大学 土木工程学院,重庆 400074)
  • 收稿日期:2021-03-02 修回日期:2021-08-19 发布日期:2023-09-08
  • 作者简介:闫自海(1984—),男,浙江杭州人,高级工程师,主要从事城市隧道设计方面的工作。E-mail:85383258@qq.com 通信作者:李硕(1996—),男,山东济南人,硕士研究生,主要从事隧道及地下工程安全运营方面的研究。E-mail:1154300467@qq.com
  • 基金资助:
    国家自然科学基金项目(51878107);华东勘测设计研究院项目(KY2019-JT-25)

Tunnel Lighting Environment Evaluation Based on Improved Entropy Method

YAN Zihai1, LI Shuo2, GAN Penglu1, LIANG Sinong1   

  1. (1. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China; 2. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2021-03-02 Revised:2021-08-19 Published:2023-09-08

摘要: 针对现有隧道照明环境评价方法主观性较强、考虑评价指标单一的问题,从光源、交通状况、通风条件以及空间通视性4个方面选取评价指标,利用改进熵值法明确各评价指标的影响程度,并结合基于BP神经网络的模型简化和基于聚类分析的安全等级划分,构建隧道照明环境评价体系。研究结果表明:权重计算结果充分反映了实测数据本身蕴涵的信息,解决了由于数据离散程度较大导致指标权重值较大的问题;基于BP神经网络的照明环境评价简化模型计算精度较高,计算拟合判断系数R2=0.934;经检验瞳孔面积变化率均值、中位数均与评估值的变化规律基本保持一致,评估值W可以有效评估隧道内部照明环境综合危险程度。

关键词: 隧道工程;照明环境;安全评价;改进熵值法;权重

Abstract: Aiming at the problems of strong subjectivity and single evaluation index in the existing tunnel lighting environment evaluation methods, the evaluation indicators were selected from four aspects: light source, traffic conditions, ventilation conditions and spatial visibility. The improved entropy method was used to clarify the impact degree of each evaluation indicator, and combining the model simplification based on BP neural network and the safety level classification based on clustering analysis, a tunnel lighting environment evaluation system was constructed. The research results show that the weight calculation results fully reflect the information contained in the measured data itself and solve the problem of the large index weight value due to the large degree of data dispersion. The simplified model for lighting environment evaluation based on BP neural network has high calculation accuracy, and the fitting judgment coefficient R2=0.934 is calculated. After inspection, the mean and median changes in pupil area are basically consistent with the variation pattern of the evaluation value. The evaluation value W can effectively evaluate the comprehensive risk level of the tunnel interior lighting environment.

Key words: tunnel engineering; lighting environment; safety evaluation; improved entropy method; weight

中图分类号: