中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2023, Vol. 42 ›› Issue (8): 147-154.DOI: 10.3969/j.issn.1674-0696.2023.08.20

• 交通装备 • 上一篇    

基于参数敏度分析的轮毂轴承寿命多目标优化

朱孙科1,孙永刚2,董绍江1,3,蒋玉安4   

  1. (1.重庆交通大学 机电与车辆工程学院,重庆 400074;2.比亚迪汽车有限公司 汽车工程研究院, 陕西 西安 710119; 3.重庆长江轴承股份有限公司 博士后科研工作站,重庆 401336;4.重庆交通大学 经济与管理学院,重庆 400074)
  • 收稿日期:2021-10-08 修回日期:2022-04-12 发布日期:2023-09-15
  • 作者简介:朱孙科(1982—),男,浙江金华人,副教授,博士,主要从事机械设计及理论、机械系统结构动力学等方面的研究。E-mail:suncobest@163.com 通信作者:孙永刚(1995—),男,甘肃会宁人,硕士研究生,主要从事轴承耐久性方面的研究。E-mail:3200991850@qq.com
  • 基金资助:
    国家自然科学基金项目(51775072);重庆市高校创新研究群体项目(CXQT20019)

Multi-objective Optimization of Hub Bearing Life Based on Parameter Sensitivity Analysis

ZHU Sunke1,SUN Yonggang2,DONG Shaojiang1,3,JIANG Yuan4   

  1. (1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Automotive Engineering Research Institute, BYD Automobile Co., Ltd., Xian 710119, Shaanxi, China; 3. Postdoctoral Research Workstation of Chongqing Changjiang Bearing Co., Ltd., Chongqing 401336, China; 4. School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2021-10-08 Revised:2022-04-12 Published:2023-09-15

摘要: 为提高某型第三代轮毂轴承受载疲劳寿命,以额定动载荷和额定静载荷作为响应指标,采用正交试验设计对轮毂轴承结构参数进行灵敏度分析,以轮毂轴承滚珠数量、滚珠直径、节圆直径及内外沟曲率半径等主要影响因素作为设计变量,建立轮毂轴承疲劳寿命多目标优化数学模型。分别采用非劣排序遗传算法(NSGA-II)、多岛遗传算法(MIGA)和最优化粒子群优化算法(MOPSO)进行优化求解,得到了轮毂轴承最优结构设计参数,采用有限元仿真分析方法对优化前后的旋压铆合装配成形轮毂轴承疲劳寿命进行对比验证。结果表明:上述优化策略实现了由2个目标函数主导的轮毂轴承整体性能提升,改善了轮毂轴承各组件的应力集中情况,提高了轮毂轴承的疲劳寿命,优化后结构最大应力较初始设计降低了约5.1%,寿命较初始设计结构增加了约3.8%,表明轮毂轴承的疲劳寿命多目标优化设计是有效的。

关键词: 车辆工程;轮毂轴承;灵敏度分析;多目标优化;疲劳寿命;有限元仿真

Abstract: In order to improve the loading fatigue life of a certain type of third-generation hub bearing, with rated dynamic load and rated static load as the response indexes, the sensitivity analysis of the structural parameters of hub bearing was carried out by orthogonal experimental design. The main influencing factors such as the number of rollers, the diameter of rollers, the diameter of pitch circle and the curvature radius of inner and outer grooves of the hub bearing were taken as design variables, and the multi-objective optimization mathematical model of the fatigue life of the hub bearing was established. The non-dominated sorting genetic algorithm (NSGA-II), multi-island genetic algorithm (MIGA) and optimization particle swarm optimization algorithm (MOPSO) were used to optimize the solution, and the optimal structural design parameters of hub bearing were obtained. The finite element simulation analysis method was used to compare and verify the fatigue life of the spinning and riveting assembly forming hub bearing before and after the optimization. The results show that the above optimization strategy has achieved the improvement of the overall performance of the hub bearing dominated by two objective functions, improved the stress concentration of each component of the hub bearing, and increased the fatigue life of the hub bearing. After optimization, the maximum stress of the structure is reduced by about 5.1% compared with that of the initial design and the life is increased by about 3.8% compared with that of the initial design structure, which indicates that the multi-objective optimization design of the fatigue life of the hub bearing is effective.

Key words: vehicle engineering; hub bearing; sensitivity analysis; multi-objective optimization; fatigue life; finite element simulation

中图分类号: