[1] 国家统计局.中国统计年鉴[M].北京:中国统计出版社,2021.
National Bureau of Statistics. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2021.
[2] 马柱,陈雨人,张兰芳.城市道路交通事故严重程度影响因素分析[J].重庆交通大学学报(自然科学版),2014,33(1):111-114.
MA Zhu, CHEN Yuren, ZHANG Lanfang. Influence factors of accident severity for urban road [J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33 (1): 111-114.
[3] 马壮林,邵春福,董春娇,等.基于累积Logistic模型的交通事故严重程度时空分析[J].中国安全科学学报,2011,21(9):94-99.
MA Zhuanglin, SHAO Chunfu, DONG Chunjiao, et al. Temporal-spatial analysis model of traffic accident severity based on cumulative Logistic model [J]. China Safety Science Journal, 2011, 21 (9): 94-99.
[4] 冯忠祥,雷叶维,张卫华,等.道路环境对绕城高速公路交通事故严重程度影响分析[J] .中国公路学报,2016,29(5):116-123.
FENG Zhongxiang, LEI Yewei, ZHANG Weihua, et al. Analysis on traffic accident severity influenced by road environment on circular highway [J]. China Journal of Highway and Transport, 2016, 29 (5):116-123.
[5] 陈昭明,徐文远,曲悠扬,等.基于混合Logit模型的高速公路交通事故严重程度分析[J].交通信息与安全,2019,37(3):42-50.
CHEN Zhaoming, XU Wenyuan, QU Youyang, et al. Severity of traffic crashes on freeways based on mixed Logit model [J]. Journal of Transport Information and Safety, 2019, 37 (3):42-50.
[6] 胡骥,闫章存,卢小钊,等.基于有序Logit与Probit模型的交通事故严重性影响因素分析[J].安全与环境学报,2018,18(3):836-843.
HU Ji, YAN Zhangcun, LU Xiaozhao, et al. Analysis for the influential factors of the accident severity based on the ordinal Logit and Probit models [J]. Journal of Safety and Environment, 2018, 18 (3): 836-843.
[7] 杨晔.基于Scobit模型的城市道路交通事故受伤严重程度及其影响因素研究[D].乌鲁木齐:新疆大学,2018.
YANG Ye. Study on Severity and Influencing Factors of Urban Road Traffic Accident Personnel Injuries Based on Scobit Model [D]. Urumqi: Xinjiang University, 2018.
[8] 王立晓,左志,杨晔,等.基于Scobit的交通事故受伤严重程度模型[J].重庆交通大学学报(自然科学版),2020,39(4):1-5.
WANG Lixiao, ZUO Zhi, YANG Ye, et al. Injury severity model of motor vehicle crashes based on Scobit [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39 (4):1-5.
[9] 戢晓峰,吴亚欣,袁华智,等.二级公路交通流特征对事故严重程度的影响[J].中国公路学报,2020,33(2):135-145.
QI Xiaofeng, WU Yaxin, YUAN Huazhi, et al. Influences of traffic flow characteristics on accident severity on secondary roads [J]. China Journal of Highway and Transport, 2020, 33 (2): 135-145.
[10] DELEN D, SHARDA R, BESSONOV M. Identifying significant predic-tors of injury severity in traffic accidents using a series of artificial neural networks [J]. Accident Analysis & Prevention, 2006, 38(3): 434-444.
[11] 许洪国,张慧永,宗芳.交通事故致因分析的贝叶斯网络建模[J].吉林大学学报(工学版),2011,41(增刊1):89-94.
XU Hongguo, ZHANG Huiyong, ZONG Fang. Bayesian network modeling of causation analysis of traffic accident [J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41 (Sup1): 89-94.
[12] 孙轶轩,邵春福,岳昊,等.基于SVM灵敏度的城市交通事故严重程度影响因素分析[J].吉林大学学报(工学版),2014,44(5):1315-1320.
SUN Yixuan, SHAO Chunfu, YUE Hao, et al. Urban traffic accident severity analysis based on sensitivity analysis of support vector machine [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44 (5): 1315-1320.
[13] 吕晓玲,宋捷.大数据挖掘与统计机器学习[M].北京:中国人民大学出版社,2016.
LYU Xiaoling, SONG Jie. Big Data Mining and Statistical Machine Learning [M]. Beijing: China Renmin University Press, 2016.
[14] 孙轶轩,邵春福,赵丹,等.交通事故严重程度C5.0决策树预测模型[J] .长安大学学报(自然科学版),2014,34(5):109-116.
SUN Yixuan, SHAO Chunfu, ZHAO Dan, et al. Traffic accident severity prediction model based on C5.0 decision tree [J]. Journal of Changan University (Natural Science Edition), 2014, 34 (5): 109-116.
[15] 张勇刚. 道路交通事故再现及预防关键技术研究[D].广州:华南理工大学,2015.
ZHANG Yonggang. Study on Key Technologies of Traffic Accident Recon-struction and Prevention [D]. Guangzhou: South China University of Technology, 2015.
[16] BREIMAN L, FRIENDMAN J H, OLSHEN R A, et al. Classification and Regression Trees [M]. New York: Routledge, 2017.
[17] YOUNG W A, WECKMAN G R, HARI V, et al. Using artificial neu-ral networks to enhance CART [J]. Neural Computing & Applications, 2012, 21(7):1477-1489.
[18] KIM J, KIM Y. Maximum a posteriori pruning on decision trees and its application to bootstrap BUMPing [J]. Computational Statistics & Data Analysis, 2006, 50(3): 710-719. |