[1] YANG H, DENG R, LU Y, et al. CircleNet: Anchor-free glomerulus detection with circle representation [J]. Medical Image Computing and Computer-Assisted Intervention, 2020, 2020: 35-44.
[2] ACHARYA V, KUMAR P. Identification and red blood cell automated counting from blood smear images using computer-aided system [J]. Medical & Biological Engineering & Computing, 2018, 56(3): 483-489.
[3] DJEKOUNE A O, MESSAOUDI K, AMARA K. Incremental circle Hough transform: An improved method for circle detection [J]. Optik, 2017, 133: 17-31.
[4] 侯学良, 单腾飞, 薛靖国. 深度学习的目标检测典型算法及其应用现状分析[J]. 国外电子测量技术, 2022, 41(6): 165-174.
HOU Xueliang, SHAN Tengfei, XUE Jingguo. Analysis of typical target detection algorithm based on deep learning and its application status [J]. Foreign Electronic Measurement Technology, 2022, 41(6): 165-174.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 779-788.
[7] SHEN Lingyun, LANG Baihe, SONG Zhengxun. DS-YOLOv8-based object detection method for remote sensing images [J]. IEEE Access, 2023, 11: 125122-125137.
[8] ZHANG Zhengbin, XU Zhenhao, GU Xingsheng, et al. Cross-CBAM: A lightweight network for real-time scene segmentation [J]. Journal of Real-Time Image Processing, 2024, 21(2): 38.
[9] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks [C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 764-773.
[10] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design [C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 13708-13717.
[11] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks [C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141. |