中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (2): 24-29.DOI: 10.3969/j.issn.1674-0696.2024.02.04

• 交通基础设施工程 • 上一篇    

测量路面三维纹理的激光约束双目鲁棒算法

王元元1,李仁杰2,刘燕燕3,张亨通2,刘德政2   

  1. (1.湖北文理学院 纯电动汽车动力系统设计与测试湖北省重点实验室,湖北 襄阳441053;2.湖北文理学院 机械工程学院, 湖北 襄阳441053;3.重庆交通大学 材料科学与工程学院,重庆400074)
  • 收稿日期:2022-08-04 修回日期:2023-11-09 发布日期:2024-03-01
  • 作者简介:王元元(1987—),男,湖北襄阳人,博士,教授,主要从事交通基础设施数字化方面的研究。E-mail:wangyuanyuan8710@163.com 通信作者:李仁杰(1998—),男,湖北孝感人,硕士,主要从事机器视觉试验研究方面的研究。E-mail:reajay0001@163.com
  • 基金资助:
    国家自然科学基金项目(52178422,51808084)

Laser-Constrained Binocular Robust Algorithm for Measuring 3D Texture of Pavement

WANG Yuanyuan1,LI Renjie2,LIU Yanyan3,ZHANG Hengtong2,LIU Dezheng2   

  1. (1.Hubei key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China; 2.School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China; 3.School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2022-08-04 Revised:2023-11-09 Published:2024-03-01

摘要: 为提升激光约束双目重构算法测量路面三维纹理的普适性,增强算法的抗光干扰能力,解决激光约束目标在变化光照下的鲁棒提取问题,基于Faster-RCNN(faster-region based convolutional neural network)构建激光约束识别模型,提取5~1 050 lux光照范围内人为构造的激光约束目标,对待测路面的约束目标开展子区域分割,进而实现子区域分割立体匹配下双目三维重构。结果表明:改进算法在1 050 lux光照强度下的平均构造深度测量值与铺砂法的拟合系数为0.987,优于原激光约束双目重构算法的0.887;在5~1 050 lux光照范围内,改进算法最大波动误差、平均波动误差分别为0.141、0.084 mm,较原激光约束双目重构算法分别降低70.20%和76.83%。

关键词: 道路工程;路面三维纹理;激光约束;双目重构;Faster-RCNN

Abstract: In order to improve the universality of the laser-constrained binocular reconstruction algorithm to measure the three-dimensional texture of the road surface, enhance the anti-light interference ability of the algorithm, and solve the problem of robust extraction under the changing illumination of the laser-constrained target, a laser-constraint recognition model was established based on Faster-RCNN (faster-region based convolutional neural network). The artificially constructed laser-constraint targets were extracted within the illumination range of 5~1 050 lux, the sub-region segmentation of the constrained target to be tested was carried out, and the binocular 3D reconstruction under the stereo matching of sub-region segmentation was realized. The results show that the fitting coefficient of the mean texture depth measurement values of the improved algorithm and the sand paving method under the illumination intensity of 1 050 lux is 0.987, which is better than 0.887 of the original laser-constrained binocular reconstruction algorithm. The maximum fluctuation error and the average fluctuation error of the improved algorithm in the illumination range of 5~1 050 lux are 0.141 mm and 0.084 mm respectively, which are 70.20% and 76.83% lower than the original laser-constrained binocular reconstruction algorithm respectively.

Key words: road engineering; three-dimensional texture of pavement; laser constraint; binocular reconstruction; Faster-RCNN

中图分类号: