[1] 黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49.
HUANG Xiaoming, ZHENG Binshuang. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49.
[2] 王元元. 沥青路面抗滑特性与其表面粗糙特性之关系研究[D]. 南京: 东南大学, 2017.
WANG Yuanyuan.Study on the Relationship between Sliding Resistance of Asphalt Pavement and Its Surface Rough Characteristics[D]. Nanjing: Southeast University, 2017.
[3] SUN Lu, WANG Yuanyuan. Three-dimensional reconstruction of macrotexture and microtexture morphology of pavement surface using six light sources-based photometric stereo with low-rank approximation[J]. Journal of Computing in Civil Engineering, 2017, 31(2): 4016054.1.
[4] HONG P N, AHN C W. Stereo matching methods for imperfectly rectified stereo images[J]. Symmetry, 2019, 11(4): 570.
[5] 王元元, 孙璐, 刘卫东, 等. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1342-1348.
WANG Yuanyuan, SUN Lu, LIU Weidong, et al. Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1342-1348.
[6] LIU Yanyan, WANG Yuanyuan, CAI Xinyi, et al. The detection effect of pavement 3D texture morphology using improved binocular reconstruction algorithm with laser line constraint[J]. Measurement, 2020, 157: 107638.
[7] 马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71.
MA Yongjie, CHENG Shisheng, MA Yunting,et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71.
[8] NGUYEN T H, NGUYEN T L, SIDOROV D N, et al. Machine learning algorithms application to road defects classification[J]. Intelligent Decision Technologies, 2018, 12(1): 59-66.
[9] HOANG N D, NGUYEN Q L. A novel method for asphalt pavement crack classification based on image processing and machine learning[J]. Engineering with Computers, 2019, 35(2): 487-498.
[10] 彭博,黄大荣,郭黎,等. 基于像素-亚像素级形态分析的路面三维图像裂缝自动识别算法[J].重庆交通大学学报(自然科学版),2018,37(9):34-42.
PENG Bo, HUANG Darong, GUO Li, et al. Automatic crack detection algorithm from 3D pavement images based on shape analysis at pixel-subpixel level[J]. Journal of Chongqing Jiaotong University (Natural Science),2018,37(9):34-42.
[11] 姚万业, 李金平. 基于改进Faster R-CNN的行人检测算法[J]. 科学技术与工程, 2020, 20(4): 1498-1503.
YAO Wanye, LI Jinping. Pedestrian detection algorithm based on improved Faster R-CNN[J]. Science Technology and Engineering, 2020, 20(4): 1498-1503.
[12] 赵立新, 邢润哲, 白银光, 等. 深度学习在目标检测的研究综述[J]. 科学技术与工程, 2021, 21(30): 12787-12795.
ZHAO Lixin, XING Runzhe, BAI Yinguang,et al. Review on survey of deep learning in target detection[J]. Science Technology and Engineering, 2021, 21(30): 12787-12795. |