[1] 蒋拯民, 党少博, 李慧云, 等. 自动驾驶汽车场景测试研究进展综述[J]. 汽车技术, 2022(8): 10-22.
JIANG Zhengmin, DANG Shaobo, LI Huiyun, et al. A survey on the research progress of scenario-based testing for autonomous vehicles[J]. Automobile Technology, 2022(8): 10-22.
[2] 王荣, 孙亚夫, 宋娟. 自动驾驶车辆道路测试场景评价方法与试验验证[J]. 汽车工程, 2021, 43(4): 620-628.
WANG Rong, SUN Yafu, SONG Juan. Evaluation method and test verification of road test scenes for autonomous vehicles[J]. Automotive Engineering, 2021, 43(4): 620-628.
[3] 刘康. 基于功能测试的自动驾驶汽车换道关键场景研究[D]. 重庆: 重庆大学, 2020.
LIU Kang. Research on Key Scenarios of Lane Changing for Autonomous Vehicles Based on Functional Testing[D]. Chongqing: Chongqing University, 2020.
[4] SHAHIN M, HEIDARI IMAN M R, KAUSHIK M, et al. Exploring factors in a crossroad dataset using cluster-based association rule mining[J]. Procedia Computer Science, 2022, 201: 231-238.
[5] TUNCALI C E, PAVLIC T P, FAINEKOS G. Utilizing S-TaLiRo as an automatic test generation framework for autonomous vehicles[C]//2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil. IEEE, 2016: 1470-1475.
[6] 周文帅, 朱宇, 赵祥模, 等. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J]. 汽车技术, 2021(1): 11-18.
ZHOU Wenshuai, ZHU Yu, ZHAO Xiangmo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18.
[7] 李江坤, 邓伟文, 任秉韬, 等. 基于场景动力学和强化学习的自动驾驶边缘测试场景生成方法[J]. 汽车工程, 2022, 44(7): 976-986.
LI Jiangkun, DENG Weiwen, REN Bingtao, et al. Automatic driving edge scene generation method based on scene dynamics and reinfor-cement learning[J]. Automotive Engineering, 2022, 44(7): 976-986.
[8] 王成壮. 基于场景的智能汽车虚拟测试与评价方法研究[D]. 西安: 长安大学, 2021.
WANG Chengzhuang. Research on Virtual Test and Evaluation Method of Intelligent Vehicle Based on Scenarios[D]. Xian: Changan University, 2021.
[9] 魏子茹. 基于改进CRITIC法的灰色关联理论在无人驾驶车辆测试评价中的应用[D]. 长春: 吉林大学, 2021.
WEI Ziru. Application of Grey Correlation Theory Based on Improved CRITIC Method in Autonomous Vehicles Test and Evaluation[D]. Changchun: Jilin University, 2021.
[10] 戴剑勇, 黄晓庆, 王雯雯. 基于改进TOPSIS的道路交通风险网络排序研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(4): 33-39.
DAI Jianyong, HUANG Xiaoqing, WANG Wenwen. Ranking of road traffic risk network based on improved TOPSIS[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(4): 33-39.
[11] ZHAO Yanan, MENG Kaiwen, GAO Li. The entropy-cost function evaluation method for unmanned ground vehicles[J]. Mathematical Problems in Engineering, 2015, 2015: 410796.
[12] 朱冰, 张培兴, 赵健. 面向多维度逻辑场景的自动驾驶安全性聚类评价方法[J]. 汽车工程, 2020, 42(11): 1458-1463.
ZHU Bing, ZHANG Peixing, ZHAO Jian. Clustering evaluation method of autonomous driving safety for multi-dimensional logical scenario[J]. Automotive Engineering, 2020, 42(11): 1458-1463.
[13] 陈君毅, 陈磊, 蒙昊蓝, 等. 基于神经网络的车辆交通协调性评价模型[J]. 同济大学学报(自然科学版), 2021, 49(1): 135-141.
CHEN Junyi, CHEN Lei, MENG Haolan, et al. Evaluation model of harmony with traffic based on neural network[J]. Journal of Tongji University (Natural Science), 2021, 49(1): 135-141.
[14] HANKEY J M,PEREZM A,MCCLAFFERTY J A. Description of the SHRP 2 naturalistic database and the crash,near-crash,and baseline data sets [R]. Blacksburg,VA : Transportation Re-search Board of The National Academies,2016.
[15] 王凤武, 张晓博, 吉哲, 等. 基于多变量LSTM模型的青岛港集装箱吞吐量预测[J]. 重庆交通大学学报(自然科学版), 2022, 41(10): 54-61.
WANG Fengwu, ZHANG Xiaobo, JI Zhe, et al. Container throughput prediction of Qingdao port based on multivariate LSTM model [J] Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(10): 54-61.
[16] 冯海霞, 宁二伟, 王琦, 等. 基于GIS的济南市交通事故成因分析[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 124-131.
FENG Haixia, NING Erwei, WANG Qi, et al. Cause analysis of traffic accidents in jinan based on GIS[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(5): 124-131. |