[1] 毕研秋. 基于多级分散体系的沥青混合料流变特性研究[D]. 西安: 长安大学, 2020.
BI Yanqiu.Study on Rheological Characteristics of Asphalt Mixture Based on Multistage Dispersion System[D]. Xian: Changan University, 2020.
[2] 徐艳玲, 朱洪洲, 青亮, 等. 紫外老化作用下 PPA/SBR 改性沥青胶浆及混合料高低温性能研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(8): 30-37.
XU Yanling, ZHU Hongzhou, QING Liang, et al. High and low temperature performance of PPA/SBR modified asphalt mastic and mixture under UV aging [J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(8): 30-37.
[3] 许新权, 唐胜刚, 杨军. 粉胶比对沥青胶浆高低温性能的影响[J]. 长安大学学报(自然科学版), 2020, 40(4): 14-26.
XU Xinquan, TANG Shenggang, YANG Jun. Influence of filler-asphalt ratio on high-and-low-temperature performance of asphalt mortar[J].Journal of Changan University (Natural Science Edition), 2020, 40(4): 14-26.
[4] WU Wangjie, JIANG Wei, YUAN Dongdong, et al. A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors[J].Construction and Building Materials, 2021, 299: 124279.
[5] 孟伟杰. 矿粉对沥青胶浆性能影响及沥青-矿粉交互作用能力的评价[D]. 扬州: 扬州大学, 2022.
MENG Weijie.Influence of Mineral Powder on Asphalt Mortar Performance and Evaluation of Asphalt-Mineral Powder Interaction Ability[D]. Yangzhou: Yangzhou University, 2022.
[6] 王洋. 填料掺量及其物理特性对沥青胶浆性能的影响[D]. 广州: 广州大学, 2023.
WANG Yang.Influence of Filler Content and Its Physical Characteristics on the Properties of Asphalt Mortar[D]. Guangzhou: Guangzhou University, 2023.
[7] 于安康. 沥青与矿粉交互作用评价及微观影响机理研究[D]. 大连: 大连海事大学, 2023.
YU Ankang.Study on interaction of Asphalt and Filler and the Microscopic Influence Mechanism[D]. Dalian: Dalian Maritime University, 2023.
[8] LI Fan, YANG Yuyou. Understanding the temperature and loading frequency effects on physicochemical interaction ability between mineral filler and asphalt binder using molecular dynamic simulation and rheological experiments[J].Construction and Building Materials, 2020, 244: 118311.
[9] TAN Yiqiu, GUO Meng. Interfacial thickness and interaction between asphalt and mineral fillers[J].Materials and Structures, 2014, 47(4): 605-614.
[10] GUO Meng, TAN Yiqiu, YU Jianxin, et al. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy[J].Materials and Structures, 2017, 50(2): 141-152.
[11] LI Fan, YANG Yuyou, WANG Linbing. Evaluation of physicochemical interaction between asphalt binder and mineral filler through interfacial adsorbed film thickness[J].Construction and Building Materials, 2020, 252: 119135.
[12] 郭乃胜, 于安康, 王志臣, 等. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 133-140.
GUO Naisheng, YU Ankang, WANG Zhichen, et al. Study on interaction ability of asphalt and filler based on interfacial adsorbed film thickness[J].Materials Reports, 2023, 37(17): 133-140.
[13] 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: JTG E20—2011[S]. 北京: 人民交通出版社, 2011.
Ministry of Transport of the Peoples Republic of China. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: JTG E20—2011[S]. Beijing: China Communications Press, 2011.
[14] 中华人民共和国交通运输部. 公路工程集料试验规程: JTG 3432—2024[S]. 北京: 人民交通出版社, 2024.
Ministry of Transport of the Peoples Republic of China.Test Methods of Aggregates for Highway Engineering: JTG 3432—2024[S]. Beijing: China Communications Press, 2024.
[15] ASTM International. ASTM C1070—2014 Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering[S]. West Conshohocken, P A: ASTM International, 2014.
[16] 刘国强. 基于流变特性的沥青/填料交互作用评价与机理研究[D]. 西安: 长安大学, 2016.
LIU Guoqiang.Evaluation and Mechanism Study of Asphalt/Filler Interaction Based on Rheological Properties[D]. Xian: Changan University, 2016.
[17] SHASHIDHAR N, SHENOY A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials, 2002, 34(10): 657-669.
[18] BUTTLAR W G, BOZKURT D, AL-KHATEEB G G, et al. Understanding asphalt mastic behavior through micromechanics[J]. Journal of the Transportation Research Board, 1999, 1681(1): 157-169.
[19] AASHTO. AASHTO T315—2020 Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)[S]. Washington, D.C.: AASHTO, 2020.
[20] AASHTO. AASHTO T350—2019 Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)[S]. Washington, D.C.: AASHTO, 2019.
[21] 唐乃膨, 黄卫东. 基于MSCR试验的SBS改性沥青高温性能评价与分级[J]. 建筑材料学报, 2016, 19(4): 665-671.
TANG Naipeng, HUANG Weidong. High temperature performance evaluation and grading of SBS modified asphalt based on multiple stress creep recovery test[J].Journal of Building Materials, 2016, 19(4): 665-671.
[22] AASHTO. AASHTO T313—2009 Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)[S]. Washington, D.C.: AASHTO, 2009.
[23] 郭东方, 张亮亮, 张明飞, 等. POE/SBS复合改性沥青高低温流变及疲劳性能研究[J]. 森林工程, 2022, 38(4): 163-171.
GUO Dongfang, ZHANG Liangliang, ZHANG Mingfei, et al. Study on rheological and fatigue properties of POE/SBS composite modified bitumen at high and low temperature[J].Forest Engineering, 2022, 38(4): 163-171.
[24] XU Jiaqiu, FAN Zepeng, WANG Dawei, et al. Experimental characterization of the compatibility between bitumen and fillers from a perspective of bitumen components and filler characteristics[J]. Materials and Structures, 2023, 56(7): 1-22.
[25] ZHANG Qingyu, LUO Jing, YANG Zhen, et al. Creep and fatigue properties of asphalt mastic with steel slag powder filler[J]. Case Studies in Construction Materials, 2023, 18: e01743.
[26] 汪昊. 考虑原材料指标的浇注式沥青胶浆及混合料性能试验研究[D]. 重庆: 重庆交通大学, 2021.
WANG Hao.Experimental Study on Properties of Pouring Asphalt Mortar and Mixture Considering Raw Material Indexes[D]. Chongqing: Chongqing Jiaotong University, 2021.
[27] CHEN Yu, XU Shibing, TEBALDI G, et al. Role of mineral filler in asphalt mixture[J]. Road Materials and Pavement Design, 2022, 23(2): 247-286. |