中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (6): 123-130.DOI: 10.3969/j.issn.1674-0696.2025.06.13

• 桥梁与隧道工程 • 上一篇    

基于贴近摄影测量的桥梁防船撞装备变形监测研究

陈正飞1,2, 陈亨驰1,2, 陈斌1,2   

  1. (1. 招商局重庆交通科研设计院有限公司,重庆 400067;2. 桥梁工程安全与韧性全国重点实验室,重庆 400067)
  • 收稿日期:2024-07-01 修回日期:2024-08-05 发布日期:2025-06-30
  • 作者简介:陈正飞(1998—),男,重庆人,硕士,主要从事无人机摄影测量方面的研究。E-mail:1486689133@qq.com 通信作者:陈斌(1970—),男,重庆人,研究员,博士,主要从事桥梁智能检测方面的研究。E-mail:chenbin039@sina.com
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1409);重庆市自然科学基金博士直通车项目(CSTB2023NSCQ-BSX0030)

Deformation Monitoring of Bridge Anti-ship-collision Equipment Based on Nap-of-the-Object Photogrammetry

CHEN Zhengfei1,2,CHEN Hengchi1,2,CHEN Bin1,2   

  1. (1. China Merchants Chongqing Communications Reseach & Design Institute Co., Ltd., Chongqing 400067,China; 2. National Key Laboratory for Bridge Engineering Safety and Resilience,Chongqing 400067,China)
  • Received:2024-07-01 Revised:2024-08-05 Published:2025-06-30

摘要: 桥梁防船撞装备能够有效降低船撞桥事故的发生率以及减轻碰撞事故后果,确保桥梁及人员财产的安全。针对桥梁防船撞装备的变形监测需求,提出了一种基于影像重构点云的桥梁防船撞装备变形监测方法;通过运用无人机采集影像,结合运动恢复结构——多视图立体视觉算法(SfM-MVS)实现了防船撞装备的三维点云模型重建;采用点云直接比较算法(cloud to cloud, C2C)进行三维点云数据变化检测,对不同时间或场景下的防船撞装备三维点云数据进行比较和分析,实现了防船撞装备变形、破损情况的自动检测。该监测方法能够识别0.4 cm以上的结构变形。研究结果表明:基于贴近摄影测量的桥梁防船撞装备变形监测方法适用于桥梁防船撞装备的自动化检测,具备较高的实用价值。

关键词: 桥梁工程;贴近摄影测量;防船撞装备;三维重建;C2C;变形监测

Abstract: Bridge anti-ship-collision equipment can effectively reduce the incidence of ship collision accidents, mitigate the consequences of collision accidents, and ensure the safety of bridges, people and property. In response to the deformation monitoring needs of bridge anti-ship-collision equipment, a deformation monitoring method of bridge anti-ship-collision equipment based on nap-of-the-object photogrammetry reconstructed point cloud was proposed. By using UAV to collect images and combining with structure from motion-multi-view stereo vision (SfM-MVS) algorithm, the three-dimensional point cloud model reconstruction of the ship collision prevention equipment was realized. The cloud to cloud (C2C) algorithm was used to detect changes in 3D point cloud data. The three-dimensional point cloud data of anti-ship-collision equipment at different time or scenarios were compared and analyzed, realizing automatic detection of deformation and damage of anti-ship-collision equipment. The proposed monitoring method was able to identify structural deformation above 0.4 cm. The research results show that the deformation monitoring method of bridge anti-collision devices based on nap-of-the-object photogrammetry is suitable for the automated detection of bridge anti-ship-collision equipment and has high practical value.

Key words: bridge engineering; nap-of-the-object photogrammetry; anti-ship-collision equipment; 3D reconstruction; C2C; deformation monitoring

中图分类号: