[1] YANG Ping-hua,XU Rui.Persistence and periodic solution for diffusive prey-predator system with functional with functional response[J] .生物数学学报,1999,14(1):1-6.
[2] TENG Zhi-dong,CHENLan-sun.Uniform persistence and existence of strictly positive solutions in nonautonomous Lotka-Volterra competitive system with delay[J] .MathAppl,1999,37:61-71.
[3] ZENG Yong-fu,XU Dao-yi.Persistence and asymptotic stability of periodic Lotka-volterra system with delay[J] .四川大学学报(自然科学版),2004,41(1):29-32.
[4] 张树文,陈兰荪.具有偏差变元的三种群食物链系统的全局正周期解的存在性[J] .数学杂志,2003,23(1):25-28.
[5] 桂占吉,陈兰荪.具有时滞的周期Logistic方程的持续性与周期解[J] .数学研究与评论,2003,23(1):109-114.
[6] DOU Jia-wei.Persistence and periodic solution of a system of two competing species with functional response[J] .生物数学学报,1997,12(1):15-22.
[7] HUO Hai-feng,LI Wan-tong.Periodic solution of a delayed predator-prey system with Machaelis-menten typefunctional response[J] .Comp.Appl.Math,2004,166:453-463.
[8] FAN Yong-hong,LI Wan-tong,WANG Lin-lin.Periodic solutions of delayed ratio-dependent predator-prey modls with monotonic or nonmonotoic functional response[J] .Nonlinear Analysis:Real Word Application,2004,5:247-263.
[9] WANG Lin-lin,LI Wan-tong.Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator-prey model with monotonic or nonmonotonic functional response[J] .Comp.Appl.Math,2004,162:341-357.
[10] 裴礼文.数学分析中的典型问题与方法[M] .北京:高等教育出版社,2001.
|