[1] 朱征宇,刘琳,崔明.一种结合SVM与卡尔曼滤波的短时交通流预测模型[J].计算机科学,2013,40(10):248-278.
ZHU Zhengyu, LIU Lin, CUI Ming. Short-term traffic flow forecasting model combining SVM and Kalman filtering [J].Computer Science, 2013, 40(10): 248-278.
[2] 张晓利,贺国光,陆化普.基于K-邻域非参数回归短时交通流预测方法[J].计算机应用与软件,2009,24(2):178-182.
ZHANG Xiaoli, HE Guoguang, LU Huapu. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regession[J]. Journal of Systems Engineering,
2009, 24 (2): 178-182.
[3] 唐志强,王正武,招晓菊,等. 基于神经网络和混沌理论的短时交通流预测[J].山西科技,2005(5):117-120.
TANG Zhiqiang, WANG Zhengwu,ZHAO Xiaoju, et al. Short-time traffic prediction based on neural network and chaos theory[J]. Shanxi Science and Technology, 2005(5): 117-120.
[4] 杨兆升,王媛,管青. 基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884.
YANG Zhaosheng, WANG Yuan, GUAN Qing. Short-term traffic flow prediction method based on SVM[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(6): 881-884.
[5] 陈淑燕,王炜. 交通量的灰色神经网络预测方法[J]. 东南大学学报(自然科学版),2004,34(7):541-544.
CHEN Shuyan, WANG Wei. Grey neural network forecasting for traffic flow[J]. Journal of Southeast University (Natural Science Edition), 2004,34( 7): 541-544.
[6] 姚智胜,邵春福,熊志华.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J]. 中国管理科学,2007,15(1):64-68.
YAO Zhisheng, SHAO Chunfu, XIONG Zhihua. Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines[J]. Chinese Journal of Management Science,2007,15(1):64-68.
[7] 刘艳忠,邵小建,李旭宏. 基于Lagrange支持向量回归机的短时交通流量预测模型的研究[J].交通与计算机,2007,25(5):46-49.
LIU Yanzhong, SHAO Xiaojian, LI Xuhong. Short-term traffic flow prediction model based on lagrange support vector regression[J]. Traffic and Computer, 2007, 25(5): 46- 49.
[8] 徐鹏,姜凤茹. 基于蚁群优化支持向量机的短时交通流量预测[J].计算机应用与软件,2013,30(3):250-254.
XU Peng,JIANG Fengru. Short-term traffic flow prediction based on SVM optimized by ACO[J]. Computer Applications and Software, 2013, 30(3): 250-254.
[9] YAN Hongsen , XU Duo. An approach to estimating product design time based on fuzzy v-support vector machine[J]. IEEE Transactions on Neural Networks, 2007, 18(3): 721-731.
[10]李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34.
LI Deyi, LIU Changyu. Study on the universality of normal cloud model [J]. Engineering Science, 2004,6(8): 28-34.
[11]杨朝晖,李德毅.二维云模型及其在预测中的应用[J].计算机学报,1998,21(11):961-969.
YANG Zhaohui, LI Deyi. Planar model and ITS application in prediction[J].Chinese Journal of Computers,1998,21(11): 961-969.
[12]MIN Sunghwan, LEE Jumin, HAN Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction[J]. Expert Systems with Applications,2006,31(3):652-660.
[13]SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on Systems, Man and Cybernetics, 1994, 24(4): 656- 667. |