中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2008, Vol. 27 ›› Issue (4): 630-633.

• • 上一篇    下一篇

基于小波与混沌集成的短时交通流预测

任其亮   

  1. 重庆交通大学 交通运输学院, 重庆 400074
  • 收稿日期:2008-01-04 修回日期:2008-02-21 出版日期:2008-08-20 发布日期:2016-11-07
  • 作者简介:任其亮(1978-),男,山东莱芜人,副教授,博士,从事城市交通系统优化与智能交通研究。E-mail:cqrql@126.com;Tel:023-60991692。
  • 基金资助:
    重庆市软科学研究计划基金项目(CSCT2007CE9009)

Research on Wavelet-Chaotic-Based Forecasting of Short-Term Traffic Flow

REN Qi-liang   

  1. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2008-01-04 Revised:2008-02-21 Online:2008-08-20 Published:2016-11-07

摘要: 针对现有短时交通流预测模型的不足,提出了一种用于交通流短时预测的小波与混沌集成方法。首先对交通流序列进行小波分解,分别得到低频部分和高频部分,并在此基础上作进一步分析,结果表明交通流存在混沌特性。然后应用混沌理论分别建立低频部分和高频部分的预测模型,对低频部分和高频部分进行预测。最后应用小波理论对混沌模型预测的结果予以重构,实现对原始交通流序列的预测,与现有方法比较,结果表明该方法具有较高的精度和应用前景。

关键词: 小波分解, 交通流, 混沌, 预测

Abstract: Aiming at the deficiency of current forecasting of short-term traffic flow,the method of combining wavelet transformation and chaos theory is proposed to model and forecast short-term traffic flow.Firstly,using wavelet decomposition theory,traffic flow series are decomposed respectively into two parts:the low frequency part and the high frequency part.And the further analysis of decomposition indicates that a chaos feature exists in the traffic flow.Secondly,using chaos theory,the chaotic forecasting models are established to forecast the low frequency part and the high frequency part respectively.Finally,the forecasting result of chaotic model is reconstructed by wavelet theory.By doing so,the forecasting of the original traffic flow series can be made.The result demonstrates that this method is of high precision and has extensive potential applications.

Key words: wavelet decomposition, traffic flow, chaos, forecasting

中图分类号: