摘要:针对传统均衡系统控制复杂、均衡速度慢等问题,结合模糊控制和PID控制理论,提出了模糊PID控制的削峰填谷式电池均衡系统。模糊PID算法用于调制MOS管的占空比(PWM),进而实现均衡电流的最佳控制。通过搭建削峰填谷式均衡系统,分析了均衡系统的均衡策略,验证了均衡电路的工作原理。以电池荷电状态(State of charge, SOC)一致性作为均衡目标,对6节锂离子电池单体进行充电和放电两种工况下的均衡控制仿真,并与未加模糊PID控制的均衡系统对比。仿真结果表明:模糊PID控制的均衡系统可以降低电池组之间的不一致性,明显缩短均衡时间。在充电过程中,均衡速度提高了47.1%;在放电过程中,均衡速度提高了39.7%。
Abstract:For the traditional equalization system, the control is complex and the equilibrium speed is slow. Combined with fuzzy control and PID control theory, a fuzzy PID control battery equalization system with peaking shaving and valley filling mode was proposed. The fuzzy PID algorithm was used to modulate the duty cycle (PWM) of the MOS transistors to achieve the optimal control of the equalization current. The equilibrium strategy of the equalization system was analyzed and the working principle of the equalization circuit was verified by establishing the peaking-shaving and valley-filling equalization system. Taking the SOC consistency of the battery as the equilibrium target, the equalization control simulation was carried out under the charging and discharging conditions of the 6-cell lithium-ion battery cells, and compared with the equalization system without fuzzy PID control. The simulation results show that the fuzzy PID control equalization system can reduce the inconsistency between battery packs and significantly shorten the equalization time. During the charging process, the equalization speed is increased by 47.1%; during the discharging process, the equalization speed is increased by 39.7%.
李军,黄志祥,周伟. 基于模糊PID控制的削峰填谷式电池均衡系统研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 132-138.
LI Jun, HUANG Zhixiang, ZHOU Wei. Battery Equalization System with Peaking Shaving and Valley Filling
Mode Based on Fuzzy PID Control. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(10): 132-138.
[1] 秦嘉琦,冉峰,季渊,等.一种基于模糊控制的削峰填谷式均衡系统[J].电力电子技术,2017,51(2):68-71.
QIN Jiaqi, RAN Feng, JI Yuan, et al. A fuzzy control based equalization system with clipping and parallel valley filling[J]. Power Electronics, 2017, 51(2): 68- 71.
[2] 赵旺彬,黄军,陈海涛.一种用于锂离子蓄电池组的主动均衡电路设计[J].航天器工程,2018,27(4):61-66.
ZHAO Wangbin, HUANG Jun, CHEN Haitao. An active balance circuit applied to lithium ion battery packs[J]. Spacecraft Engineering, 2018, 27(4): 61-66.
[3] 张彦会,孟祥虎,肖婷,等.模糊PID自调整控制的锂电池均衡研究[J].电子技术应用,2015,41(10):123-125.
ZHANG Yanhui, MENG Xianghu, XIAO Ting,et al. Equilibrium research on fuzzy PID and self-adjusting control for lithium battery[J]. Application of Electronic Technique, 2015, 41(10): 123-125.
[4] 刘胜永,于跃,罗文广,等.基于SOC的锂电池组能量均衡控制策略研究[J].电源技术,2017,41(12):1712-1714.
LIU Shengyong, YU Yue, LUO Wenguang, et al. Research on energy balancing control strategy of lithium battery pack based on SOC[J]. Power Supply Technology, 2017, 41(12): 1712-1714.
[5] 吴迪.锂电池充电控制与管理方法研究[D].北京:北京交通大学,2015.
WU Di.The Research on Li-ion Battery Charge Control and Management[D]. Beijing: Beijing Jiaotong University, 2015.
[6] 张树梅.基于磷酸铁锂单体电池荷电状态的均衡算法研究[D].上海:上海交通大学,2015.
ZHANG Shumei.Research on Equalization Algorithm Based on LiFePO4 Cell State of Charge[D]. Shanghai: Shanghai Jiaotong University, 2015.
[7] 叶凌云,朱幸,黄添添,等.变压器分立的动力电池组主动均衡技术研究[J].仪器仪表学报,2018,39(7):83-91.
YE Lingyun, ZHU Xing, HUANG Tiantian,et al. Research on active balance technology of power battery pack based on multi-transformer method[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 83-91.
[8] 孙玉巍,付超,李永刚,等.用于电池储能系统的级联式电力电子变压器均衡及协调控制[J].电力系统自动化,2018,42(18):123-135.
SUN Yuwei, FU Chao, LI Yonggang, et al. Balancing and coordinated control of cascaded power electronic transformers for battery energy storage system[J]. Automation of Electric Power Systems, 2018, 42(18): 123-135.
[9] 盘朝奉,韩福强,陈燎,等.基于模糊控制的增程式电动汽车能量分配策略[J].重庆交通大学学报(自然科学版),2014,33(3):140-144.
PAN Chaofeng, HAN Fuqiang, CHEN Liao, et al. Power distribution strategy of extend range electric vehicle based on fuzzy control[J]. Journal of Chongqing Jiaotong University(Natural Science), 2014, 33 (3): 140-144.
[10] 安治国,孙志昆,张栋省,等.基于等效模型扩展卡尔曼滤波锂电池SOC估算[J].重庆交通大学学报(自然科学版),2019, 38(2):133-138.
AN Zhiguo, SUN Zhikun, ZHANG Dongsheng, et al. SOC estimation of lithium battery based on equivalent model of extended Kalman filter [J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(2): 133-138.
[11] LIU Hongwei, HE Hong, GUI Yu, et al. An active equalization technique based on flyback converter topology[J]. Applied Mechanics and Materials, 2014, 721: 612-617.
[12] 张露.基于反激式变压器锂电池组双向均衡系统优化分析[D].成都:西南交通大学,2018.
ZHANG Lu. The Design and Simulation Analysis of Lithium Batteries Equalization System for Electric Vehicle[D]. Chengdu: Southwest Jiaotong University, 2018.
[13] BAEK I K, KIM T H, LIM C S, et al. Modularized battery cell voltage equalization circuit using extended multi-winding transformer[C]// Vehicle Power and Propulsion Conference (VPPC) 2012. U.S.A: IEEE, 2012.
[14] XUE Tao, CHENG Ximing, FANG Yuanqi, et al. Advanced multi-winding transformer equalizer for electric vehicle battery system[C]// The 32nd Chinese Control Conference. Beijing: Technical Committee on Control Theory, CAA, 2013.