[1] 吴春芳. 动力电池SOC估算综述[J]. 电源技术, 2017, 41(12):1795-1798.
WU Chunfang. Review of state of charge estimation for power battery [J]. Chinese Journal of Power Sources, 2017, 41(12): 1795-1798.
[2] RUI X, SUN F, ZHENG C, et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer
battery in electric vehicles [J]. Applied Energy, 2014, 113(1): 463-476.
[3] 杨文荣, 朱赛飞, 陈阳, 等. 基于改进安时积分法估计锂离子电池组SOC[J]. 电源技术, 2018, 42(2):183-184.
YANG Wenrong, ZHU Saifei, CHEN Yang, et al. SOC estimation of lithium-ion battery based on improved ampere-hour integral method [J]. Chinese Journal of Power
Sources, 2018, 42(2):183-184.
[4] 王笑天, 杨志家, 王英男,等. 双卡尔曼滤波算法在锂电池SOC估算中的应用[J]. 仪器仪表学报, 2013, 34(8):1732-1738.
WANG Xiaotian, YANG Zhijia, WANG Yingnan, et al.Application of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery [
J]. Chinese Journal of Scientific Instrument, 2013, 34 (8): 1732-1738.
[5] 林程, 张潇华, 熊瑞. 基于模糊卡尔曼滤波算法的动力电池SOC估计[J]. 电源技术, 2016, 40(9):1836-1839.
LIN Cheng, ZHANG Xiaohua, XIONG Rui. State of charge estimation for power lithium-ion batteries based on fuzzy Kalman filtering algorithm [J]. Chinese Journal of
Power Sources, 2016, 40 (9): 1836-1839.
[6] 刘欣博, 王乃鑫, 李正熙. 基于扩展卡尔曼滤波法的锂离子电池荷电状态估算方法研究[J]. 北方工业大学学报, 2016, 28(1):49-56.
LIU Xinbo, WANG Naixin, LI Zhengxi. State of charge estimation for lithium-ion batteries based on the extended Kalman filter [J]. Journal of North China
University of Technology, 2016, 28 (1): 49-56.
[7] 李军,黄志祥,周伟. 基于模糊PID的削峰填谷式电池均衡系统研究[J]. 重庆交通大学学报(自然科学版), 2020,39(10):132-138.
LI Jun, HUANG Zhixiang, ZHOU Wei. Battery equalization system with peaking shaving and valley filling mode based on fuzzy PID control [J]. Journal of Chongqing
Jiaotong University (Natural Science), 2020, 39(10):132-138.
[8] 邓涛, 李德才, 罗卫兴, 等. 分阶段电池SOC估算研究[J]. 电源技术, 2018, 42 (5):49-53.
DENG Tao, LI Decai, LUO Weixing, et al. Estimation research of battery SOC in stages [J]. Chinese Journal of Power Sources, 2018, 42(05): 49-53.
[9] 樊彬, 任山, 罗运俊. 实际使用工况的锂离子电池SOC-OCV关系[J]. 电源技术, 2018, 42(5):641-644.
FAN Bin, REN Shan, LUO Yunjun. Research on relationship between SOC and OCV of lithium ion battery under actual application condition [J]. Chinese Journal of
Power Sources, 2018, 42(5): 641-644.
[10] 施必剑, 胥飞. 递推最小二乘法算法的谐波电流检测方法改进[J]. 上海电机学院学报, 2018, 21(5):47-50.
SHI Bijian,XU Fei. Improved harmonic current detection method in recursive least square algorithm [J]. Journal of Shanghai Dianji University, 2018, 21(5):47-50.
[11] 赵天意. 基于改进卡尔曼滤波的锂离子电池状态估计方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
ZHAO Tianyi.Lithium-Ion Battery State Estimation Method Based on Improved Kalman Filter [D]. Harbin: Harbin Institute of Technology, 2016.
[12] VILA J P, WAGNER V, NEVEU P. Bayesian nonlinear model selection and neural networks: A conjugate prior approach [J]. IEEE Transactions on Neural Networks,
2000, 11(2): 265-78.
[13] 朱晓青, 马定寰, 李圣清,等. 基于BP神经网络的微电网蓄电池荷电状态估计[J]. 电子测量与仪器学报, 2017,31(12):2042-2048.
ZHU Xiaoqing, MA Dinghuan, LI Shengqing, etal. Estimation of state of charge for micro-grid battery based on BP neural network [J]. Journal of Electronic
Measurement and Instrument, 2017, 31(12): 2042-2048.
[14] 陈雯柏. 人工神经网络原理与实践[M].西安:西安电子科技大学出版社, 2016.
CHEN Wenbai.Principles and Practice of Artificial Neural Networks [M]. Xian: Xidian University Press, 2016. |