中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (03): 31-36.DOI: 10.3969/j.issn.1674-0696.2022.03.05

• 交通+大数据人工智能 • 上一篇    下一篇

基于公交驾驶员心理状况的PCA-Logistic交通事故倾向性预测方法研究

胡立伟,郭治,张苏航,范仔健,殷秀芬   

  1. (昆明理工大学 交通工程学院,云南 昆明 650500)
  • 收稿日期:2020-11-23 修回日期:2020-12-14 发布日期:2022-03-24
  • 作者简介:胡立伟(1977—),男,山东潍坊人,教授,博士,主要从事交通安全方面的研究。E-mail:liweihukm@sina.com/g2604115507@163.com
  • 基金资助:
    国家自然科学基金项目(61863019)

PCA-Logistic Prediction Method of Traffic Accident Tendency Based on Psychological Status of Bus Drivers

HU Liwei, GUO Zhi, ZHANG Suhang, FAN Zijian, YIN Xiufen   

  1. (School of Traffic Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China)
  • Received:2020-11-23 Revised:2020-12-14 Published:2022-03-24

摘要: 提出了一种基于公交驾驶员心理状况的PCA-Logistic交通事故倾向性预测方法。该方法针对传统Logistic回归模型中部分自变量间可能存在的多重共线性进而影响预测结果问题,采用主成分分析法对自变量进行降维处理并构建了PCA-Logistic交通事故预测模型;通过约登指数法确定二分类阈值表征预测结果中交通事故的发生与否,达到改进目的;结合1 004名公交驾驶员的心理健康问卷调查结果和公交驾驶员近1年内是否发生过交通事故的统计数据,对所建模型进行了验证;并对公交驾驶员心理健康状况提出了针对性的改进措施建议。研究结果表明:9项心理因子中的躯体化、强迫症状、抑郁和敌意是影响公交驾驶员行车安全的危险心理因子;所构建的PCA-Logistic交通事故预测模型有效且阈值划分合理。

关键词: 交通工程;道路安全;心理健康;Logistic回归;主成分分析法;交通事故预测模型

Abstract: A PCA-Logistic traffic accident tendency prediction method based on the psychological status of bus drivers was proposed. Aiming at the problem that some independent variables in the traditional logistic regression model may have multicollinearity, which may affect the prediction results, the principal component analysis method was used to reduce the dimensions of the independent variables, and the PCA-Logistic traffic accident prediction model was constructed. The two classification thresholds were determined by the Jordan index method to represent the occurrence of traffic accidents in the prediction results, so as to achieve the purpose of improvement. Then, combined with the psychological health questionnaire survey results of 1004 bus drivers and the statistical data whether drivers have had traffic accidents in recent one year, the model was verified, and according to the research results, the targeted measures and suggestions to improve the mental health of bus drivers were put forward. The research results show that: among the 9 psychological factors, somatization, obsessive-compulsive symptoms, depression and hostility are the dangerous psychological factors affecting drivers driving safety; the proposed PCA-Logistic traffic accident prediction model is effective, and the threshold division is reasonable.

Key words: traffic engineering; road safety; mental health; Logistic regression; principal component analysis; traffic accident perdition model

中图分类号: