[1] 王晓平, 闫飞. 京津冀农产品冷链物流需求影响因素及预测模型研究[J]. 福建农业学报, 2018, 33(8): 870-878.
WANG Xiaoping, YAN Fei. Logistic demands and forecasting of agriculture cold chain serving Beijing, Tianjin and Hebei province[J]. Fujian Journal of Agricultural Sciences, 2018, 33(8): 870-878.
[2] 倪继娜, 张巍, 王菲. 铁路商品汽车运输需求分析及发展对策探讨[J]. 铁道运输与经济, 2019, 41(9): 35-39.
NI Jina, ZHANG Wei, WANG Fei. A tentative study on demand analysis and development strategy of railway commodity automobile transportation[J]. Railway Transport and Economy, 2019, 41(9): 35-39.
[3] 秦小楠. 天津港水产品冷链物流需求预测研究[D]. 天津: 天津理工大学, 2022.
QIN Xiaonan. Research on Forecasting of Cold Chain Logistics Demand of Aquatic Products in Tianjin Port[D]. Tianjin: Tianjin University of Technology, 2022.
[4] 胡小建, 张美艳, 卢林. 物流需求预测模型构建[J]. 统计与决策, 2017(19): 185-188.
HU Xiaojian, ZHANG Meiyan, LU Lin. Construction of logistics demand forecasting model[J]. Statistics & Decision, 2017(19): 185-188.
[5] 郑琰, 黄兴, 肖玉杰. 基于时间序列的商品需求预测模型研究[J]. 重庆理工大学学报(自然科学), 2019, 33(9): 217-222.
ZHENG Yan, HUANG Xing, XIAO Yujie. Research on the commodity demand forecasting model based on time series[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(9): 217-222.
[6] 卜令营, 侯宏, 樊东鑫. 基于GM(1, 1)回归模型的烟台市物流需求预测[J]. 物流技术, 2019, 38(12): 42-48.
BU Lingying, HOU Hong, FAN Dongxin. Forecast of logistics demand in Yantai based on GM(1, 1) regression model[J]. Logistics Technology, 2019, 38(12): 42-48.
[7] 沈琪, 郭洪利. 基于多元变权组合预测模型的物流需求预测[J]. 价值工程, 2021, 40(18): 1-4.
SHEN Qi, GUO Hongli. Logistics demand forecasting based on multivariate combination forecasting model[J]. Value Engineering, 2021, 40(18): 1-4.
[8] 蔡婉贞, 黄翰. 基于BP-RBF神经网络的组合模型预测港口物流需求研究[J]. 郑州大学学报(工学版), 2019, 40(5): 85-91.
CAI Wanzhen, HUANG Han.A model based on the combination of BP and RBF neural network for port logistic demand forecasting[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(5): 85-91.
[9] SUYKENS J A K, VANDEWALLE J. Chaos control using least-squares support vector machines[J]. International Journal of Circuit Theory and Applications, 1999, 27(6): 605-615.
[10] 耿立艳, 张占福. 铁路货物周转量的LSSVM智能组合预测法[J]. 统计与决策, 2019, 35(24): 77-80.
GENG Liyan, ZHANG Zhanfu. LSSVM intelligent combination forecasting method for railway freight turnover[J]. Statistics & Decision, 2019, 35(24): 77-80.
[11] HASHIM F A, HUSSAIN K, HOUSSEIN E H, et al. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems[J]. Applied Intelligence, 2021, 51(3): 1531-1551.
[12] 郑婷婷, 刘升, 叶旭. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究, 2022, 39(5): 1410-1414.
ZHENG Tingting, LIU Sheng, YE Xu. Arithmetic optimization algorithm based on adaptive t-distribution and improved dynamic boundary strategy[J]. Application Research of Computers, 2022, 39(5): 1410-1414.
[13] 彭辉, 王剑坡, 张娜. 基于SVM的高原川道型城市通勤者出行方式选择研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 18-23.
PENG Hui, WANG Jianpo, ZHANG Na.Travel mode choice of commuters in corridor valley pattern city of loess plateau based on SVM[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(11): 18-23.
[14] 姜金德, 周海花. 基于区域经济指标的区域物流需求 PCR预测研究——以江苏省为例[J]. 济南大学学报(社会科学版), 2021, 31(4): 124-132.
JIANG Jinde, ZHOU Haihua. Research on PCR forecast of regional logistics demand based on regional economic index: Taking Jiangsu province as an example[J]. Journal of University of Jinan (Social Science Edition), 2021, 31(4): 124-132.
[15] ZHANGXinfeng, WANG Shengchang, ZHAO Yan. Application of support vector machine and least squares vector machine to freight volume forecast[C]∥2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing. IEEE, 2011: 104-107.
[16] 耿立艳. 基于GRA与KPCA的LSSVM物流需求预测[J]. 交通运输系统工程与信息, 2015, 15(1): 137-142.
GENG Liyan. Forecast of logistics demand using LSSVM combining GRA with KPCA[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 137-142.
[17] 王艳. 物流成本指数及其影响因素比较研究[J]. 价格理论与实践, 2020(4): 84-87.
WANG Yan. Empirical research on logistics cost index and influencing factors[J]. Price: Theory & Practice, 2020(4): 84-87.
[18] 江志华, 朱国宝. 灰色预测模型GM(1, 1)及其在交通运量预测中的应用[J]. 武汉理工大学学报(交通科学与工程版), 2004, 28(2): 305-307.
JIANG Zhihua, ZHU Guobao. Greymodel-GM (1, 1) and its application to predicting transportation volume[J]. Journal of Wuhan University of Technology, 2004, 28(2): 305-307.
[19] 郑少耿. 基于阿基米德优化双卡尔曼的单液流锌镍电池SOC估计方法研究[D]. 南宁: 广西大学, 2022.
ZHENG Shaogeng. Research on SOC Estimation Method of Single Flow Zinc-Nickel Battery Based on Archimedes Optimized Dual Kalman[D]. Nanning: Guangxi University, 2022. |