重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (11): 1-10.DOI: 10.3969/j.issn.1674-0696.2024.11.01
• 交通基础设施工程 •
何兆益1,张宇2,宋刚2,许滌平3,伍洲3
收稿日期:
2023-12-05
修回日期:
2024-05-13
发布日期:
2024-11-27
作者简介:
何兆益(1965—),男,云南昭通人,教授,主要从事道路工程等方面的研究。E-mail:hzyzwb@cqjtu.edu.cn
基金资助:
HE Zhaoyi1, ZHANG Yu2, SONG Gang2, XU Diping3, WU Zhou3
Received:
2023-12-05
Revised:
2024-05-13
Published:
2024-11-27
摘要: 沥青路面施工过程中,压实质量是影响其使用性能的重要因素,压实不足或压实过度均会使得沥青路面过早出现损坏。为推动探地雷达(GPR)在沥青路面压实度检测领域的发展,更全面地评价沥青路面的压实质量,系统阐述了探地雷达检测原理、系统组成及数据处理方法;对探地雷达在沥青路面压实度检测领域的研究现状进行了归纳和总结。研究结果表明:沥青混合料的介电特性受其组成成分体积比、雷达频率及路面温度等因素的影响;通过建立复合介电模型可以预测沥青混合料的压实度,但其精确性和适用范围仍有待提高;对于含水沥青混合料,水的存在会使得介电常数测量值偏大,从而影响密度预测的准确性。未来可优化探地雷达信号处理手段,提升探地雷达对沥青混合料介电常数的检测精度;进一步建立具有广泛适用范围的复合介电模型,提高密度预测的精确性和适用范围;将探地雷达与压路机进行结合,建立完善的沥青路面压实度实时监测系统。
中图分类号:
何兆益1,张宇2,宋刚2,许滌平3,伍洲3. 基于探地雷达的沥青路面压实度检测研究综述及展望[J]. 重庆交通大学学报(自然科学版), 2024, 43(11): 1-10.
HE Zhaoyi1, ZHANG Yu2, SONG Gang2, XU Diping3, WU Zhou3. Literature Review and Prospect of Asphalt Pavement Compaction Detection Based on Ground Penetrating Radar[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(11): 1-10.
[1] WANG Siqi, SUI Xin, LENG Zhen, et al. Asphalt pavement density measurement using non-destructive testing methods: Current practices, challenges, and future vision [J]. Construction and Building Materials, 2022, 344: 128154.
[2] JOSHAGHANI A, SHOKRABADI M. Ground penetrating radar (GPR) applications in concrete pavements [J]. International Journal of Pavement Engineering, 2022, 23(13): 4504-4531. [3] KASSEM E, CHOWDHURY A, SCULLION T, et al. Application of ground-penetrating radar in measuring the density of asphalt pavements and its relationship to mechanical properties [J]. International Journal of Pavement Engineering, 2016, 17(6): 503-516. [4] YU Xiaohe, LUO Rong, HUANG Tingting, et al. Moisture content prediction model of asphalt mixtures based on dielectric properties [J]. Journal of Materials in Civil Engineering, 2022, 34(4): 0004155. [5] 大卫 J. 格里菲斯. 电动力学导论[M]. 北京: 机械工业出版社, 2014. GRIFFITHS D J. Introduction to Electrodynamics [M]. Beijing: China Machine Press, 2014. [6] 罗蓉, 李冲, 程博文, 等. 基于GPR正演技术的路面反射裂缝图像解译研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 36-44. LUO Rong, LI Chong, CHENG Bowen, et al. Image interpretation of pavement reflection crack based on GPR forward modeling technology [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(1): 36-44. [7] 内蒙古自治区交通运输科学发展研究院.公路路基路面三维探地雷达检测规程:DB 15/T 2617—2022[S].内蒙古自治区市场监督管理局,2022. Inner Mongolia Autonomous Region Transportation Science Development Research Institute. Regulation of 3D Ground Penetrating Radar Dectection for Road Subgrade and Pavement: DB 15/T 2617—2022[S]. Administration for Market Regulation of Inner Mongolia Autonomous Region, 2022. [8] WAI-LOK LAI W, DROBERT X, ANNAN P. A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis [J]. NDT & E International, 2018, 96: 58-78. [9] SLOB E, SATO M,OLHOEFT G. Surface and borehole ground-penetrating-radar developments [J]. Geophysics, 2010, 75(5): 103-120. [10] 王大为, 吕浩天, 汤伏蛟, 等. 三维探地雷达道路隐性病害检测分析与数字化技术综述[J]. 中国公路学报, 2023, 36(3): 1-19. WANG Dawei,LYU Haotian, TANG Fujiao, et al. Road structural defects detection and digitalization based on 3D ground penetrating radar technology: A state-of-the-art review [J]. China Journal of Highway and Transport, 2023, 36(3): 1-19. [11] TONG Zheng, GAO Jie, YUAN Dongdong. Advances of deep learning applications in ground-penetrating radar: A survey [J]. Construction and Building Materials, 2020, 258: 120371. [12] ECONOMOU N, VAFIDIS A. Spectral balancing GPR data using time-variant bandwidth in the t-f domain [J]. Geophysics, 2010, 75(3): 19-27. [13] BENEDETTO A, TOSTI F, CIAMPOLI L B, et al. An overview of ground-penetrating radar signal processing techniques for road inspections [J]. Signal Processing, 2017, 132(C): 201-209. [14] SUN Jingsheng. Recognizing surface scattering in ground-penetrating radar data [J]. Geophysics, 1995, 60(5): 1378. [15]JOL H M. Ground Penetrating Radar Theory and Applications [M]. Burlington: Elsevier, 2009. [16] KIM J H, CHO S J, YI M J. Removal of ringing noise in GPR data by signal processing [J]. Geosciences Journal, 2007, 11(1): 75-81. [17] DOU Qingxu, WEI Lijun, MAGEE D R, et al. Real-time hyperbola recognition and fitting in GPR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 51-62. [18] TRAVASSOS X L, AVILA S L, IDA N. Artificial neural networks and machine learning techniques applied to ground penetrating radar: A review [J]. Applied Computing and Informatics, 2021, 17(2): 296-308. [19] BAI Xu, YANG Yu, WEI Shouming, et al. A comprehensive review of conventional and deep learning approaches for ground-penetrating radar detection of raw data [J]. Applied Sciences, 2023, 13(13): 7992. [20] LI Yi, DANG Pengfei, XU Xiaohu, et al. Deep learning for improved subsurface imaging: Enhancing GPR clutter removal performance using contextual feature fusion and enhanced spatial attention [J]. Remote Sensing, 2023, 15(7): 1729. [21] SUKHOBOK Y A, VERKHOVTSEV L R, PONOMARCHUK Y V. Automatic evaluation of pavement thickness in GPR data with artificial neural networks [J]. IOP Conference Series: Earth and Environmental Science, 2019, 272(2): 022202. [22] LENG Z. Prediction of In-situ Asphalt Mixture Density Using Ground Penetrating Radar: Theoretical Development and Field Verification [D]. Illinois: University of Illinois at Urbana Champaign, 2011. [23] ZHAO Shan, AL-QADI I L. Development of an analytic approach utilizing the extended common midpoint method to estimate asphalt pavement thickness with 3-D ground-penetrating radar [J]. NDT & E International, 2016, 78: 29-36. [24] CAO Qingqing, AL-QADI I L. Development of a numerical model to predict the dielectric properties of heterogeneous asphalt concrete [J]. Sensors, 2021, 21(8): 2643. [25] 谢辉, 丛林, 蔡迎春, 等. GPR电磁波在层状路面中传播的正演模拟[J]. 重庆交通学院学报, 2006, 25(4): 70-72. XIE Hui, CONG Lin, CAI Yingchun, et al. Forward simulation for propagation of GPR electromagnetic wave in layered pavement [J]. Journal of Chongqing Jiaotong University, 2006, 25(4): 70-72. [26] 阳佳慧. 探地雷达层状介质参数反演算法研究[D]. 桂林: 桂林电子科技大学, 2020. YANG Jiahui. Research on the Inversion Algorithm for Layered Media Parameters in Ground Penetrating Radar[D]. Guilin: Guilin University of Electronic Technology, 2020. [27] 李宗玲, 陈威, 戴前伟. 基于BBO-PSO混合优化算法的探地雷达波形反演[J]. 物探化探计算技术, 2020, 42(3): 352-359. LI Zongling, CHEN Wei, DAI Qianwei. Ground penetrating radar waveform inversion based on BBO-PSO hybrid optimization algorithm [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2020, 42(3): 352-359. [28] 刘仁杰, 兰天, 杨小鹏, 等. 基于遗传算法的探地雷达层状介质参数反演算法[J]. 信号处理, 2021, 37(11): 2164-2170. LIU Renjie, LAN Tian, YANG Xiaopeng, et al. Inversion algorithm for parameters of layered media with ground penetrating radar based on genetic algorithm [J]. Journal of Signal Processing, 2021, 37(11): 2164-2170. [29] 刘琦. 基于介电模型的沥青混合料各组分体积率的反算研究[D]. 郑州: 华北水利水电大学, 2022. LIU Qi. Inverse Calculation of the Volume Ratio of Each Component of Asphalt Mixture Based on Dielectric Model [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022. [30] 刘涛. 基于无损检测方法的沥青路面介电特性与施工质量评价研究[D]. 广州: 华南理工大学, 2016. LIU Tao. Research on Dielectric Property and Construction Quality Assessment of Asphalt Pavement Using Nondestructive Testing [D]. Guangzhou: South China University of Technology, 2016. [31] ZHONG Yanhui, WANG Yilong, ZHANG Bei, et al. Prediction model of asphalt content of asphalt mixture based on dielectric properties [J]. Advances in Civil Engineering, 2020, 2020(1): 6661593. [32] ZHAI Yingying, ZHANG Bei, WANG Fuming, et al. Composite dielectric model of asphalt mixtures considering mineral aggregate gradation [J]. Journal of Materials in Civil Engineering, 2019, 31(6): 0002642. [33] ZHAI Yingying, ZHONG Yanhui, ZHANG Bei, et al. Investigating the sensitivity of mineral aggregate size on the dielectric response of asphalt concrete based on a multiscale experiment [J]. AIP Advances, 2022, 12(3): 035314. [34] 孟美丽. 基于频率和温度的混凝土与沥青混合料介电模型研究[D]. 郑州: 郑州大学, 2014. MENG Meili. Study on Dielectric Model Including the Frequency and Temperature of Concrete and Asphalt Mixture [D]. Zhengzhou: Zhengzhou University, 2014. [35] YU Xiaohe, LUO Rong, HUANG Tingting, et al. Development of relative humidity-frequency equivalence principle for the dielectric properties of asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2021, 33(8): 0003859. [36] 于晓贺. 道路沥青混合料介电常数研究[D]. 武汉: 武汉理工大学, 2018. YU Xiaohe. Research on Dielectric Constant of Asphalt Mixture [D]. Wuhan: Wuhan University of Technology, 2018. [37] LENG Zhen, AL-QADI I L, SHANGGUAN P, et al. Field application of ground-penetrating radar for measurement of asphalt mixture density: case study of Illinois route 72 overlay [J]. Journal of the Transportation Research Board, 2012, 2304(1): 133-141. [38] ZHANG Bei, NI Yaowei, ZHONG Yanhui, et al. Influence of temperature on the dielectric properties of asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2022, 34(4): 0004141. [39] YU Xiaohe, LUO Rong, HUANG Tingting. Influence of temperature on the dielectric properties of asphalt mixtures [J]. International Journal of Pavement Engineering, 2023, 24(2): 2046273. [40] AL-QADI I L, LENG Z, LAHOUAR S, et al. In-place hot-mix asphalt density estimation using ground-penetrating radar [J]. Journal of the Transportation Research Board, 2010, 2152(1): 19-27. [41] LENG Zhen, AL-QADI I L, LAHOUAR S. Development and validation for in situ asphalt mixture density prediction models [J]. NDT & E International, 2011, 44(4): 369-375. [42] 钟燕辉. 层状体系介电特性反演及其工程应用[D]. 大连: 大连理工大学, 2006. ZHONG Yanhui. Inverse Analysis of Dielectric Properties of Layered Structures and the Applications in Engineering [D]. Dalian: Dalian University of Technology, 2006. [43] 熊学堂, 谭忆秋, 张德津, 等. 基于电磁混合理论的沥青路面密度预估方法[J]. 建筑材料学报, 2022, 25(6): 650-656. XIONG Xuetang, TAN Yiqiu, ZHANG Dejin, et al. Density prediction method of asphalt pavement based on electromagnetic mixing theory [J]. Journal of Building Materials, 2022, 25(6): 650-656. [44] 熊学堂, 谭忆秋, 肖神清, 等. 基于介电特性的沥青混合料密度预估优化模型[J]. 中国公路学报, 2022, 35(1): 180-188. XIONG Xuetang, TAN Yiqiu, XIAO Shenqing, et al. Optimization model of asphalt mixture density prediction based on dielectric property [J]. China Journal of Highway and Transport, 2022, 35(1): 180-188. [45] XIONG Xuetang, XIAO Shenqing, TAN Yiqiu, et al. Estimation of density and moisture content in asphalt mixture based on dielectric property [J]. Construction and Building Materials, 2021, 298(12): 123518. [46] CUI Lilong, LING Tianqing, ZHANG Zeyu, et al. Development of asphalt mixture density estimation model applicable to wide air void content range using ground penetrating radar [J]. Construction and Building Materials, 2021, 293: 123521. [47] 陈乙方, 李峰, 周思齐, 等. 基于机器学习算法的沥青路面原位密度预测模型[J]. 中国公路学报, 2023, 36(12): 333-344. CHEN Yifang, LI Feng, ZHOU Siqi, et al. In-situ density prediction model for asphalt pavement based on machine learning algorithm [J]. China Journal of Highway and Transport, 2023, 36(12): 333-344. [48] 凌天清, 崔立龙, 陈巧巧, 等. 基于路面雷达测定沥青混合料压实度及空隙率研究综述[J]. 地球物理学进展, 2019, 34(6): 2467-2480. LING Tianqing, CUI Lilong, CHEN Qiaoqiao, et al. Review of the research of using ground penetrating radar to measure compactness and volume of air voids of asphalt mixture [J]. Progress in Geophysics, 2019, 34(6): 2467-2480. [49] 杨兵. 基于改进介电常数模型的沥青路面面层压实度反演[D]. 郑州: 郑州大学, 2010. YANG Bing. Backcalculating the Compaction of the Surface of Asphalt Pavement Based on Improved Dielectric Constant Model [D]. Zhengzhou: Zhengzhou University, 2010. [50] BALTRUAITIS A, VAITKUS A, SMIRNOVS J. Asphalt layer density and air voids content: GPR and laboratory testing data reliance [J]. The Baltic Journal of Road and Bridge Engineering, 2020, 15(3): 93-110. [51] 凌天清, 刁航, 田波, 等. 基于探地雷达技术的沥青面层压实质量评价研究[J]. 地球物理学进展, 2023, 38(6): 2724-2733. LING Tianqing, DIAO Hang, TIAN Bo, et al. Study on compaction quality evaluation of asphalt layer based on ground penetrating radar technology [J]. Progress in Geophysics, 2023, 38(6): 2724-2733. [52] SHANGGUAN Pengcheng, AL-QADI I L. Calibration of FDTD simulation of GPR signal for asphalt pavement compaction monitoring [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1538-1548. [53] SHANGGUAN P. Development of Algorithms for Asphalt Pavement Compaction Monitoring Utilizing Ground Penetrating Radar [D]. Illinois: Urbana: University of Illinois at Urbana-Champaign, 2014. [54] WANG Siqi, AL-QADI I L, CAO Qingqing. Factors impacting monitoring asphalt pavement density by ground penetrating radar [J]. NDT & E International, 2020, 115: 102296. [55] SHANGGUAN P, AL-QADI I, COENEN A, et al. Algorithm development for the application of ground-penetrating radar on asphalt pavement compaction monitoring [J]. International Journal of Pavement Engineering, 2016, 17(3): 189-200. [56] SHANGGUAN P, AL-QADI I L, LENG Zhen, et al. Innovative approach for asphalt pavement compaction monitoring with ground-penetrating radar [J]. Journal of the Transportation Research Board, 2013, 2347(1): 79-87. [57] WANG Siqi, ZHAO Shan, AL-QADI I L. Real-time monitoring of asphalt concrete pavement density during construction using ground penetrating radar: Theory to practice [J]. Journal of the Transportation Research Board, 2019, 2673(5): 329-338. [58] ZHAO Shan, AL-QADI I L. Algorithm development for real-time thin asphalt concrete overlay compaction monitoring using ground-penetrating radar [J]. NDT & E International, 2019, 104: 114-123. [59] FERNANDES F M, FERNANDES A, PAIS J. Assessment of the density and moisture content of asphalt mixtures of road pavements [J]. Construction and Building Materials, 2017, 154: 1216-1225. [60] CAO Qingqing, AL-QADI I L. Effect of moisture content on calculated dielectric properties of asphalt concrete pavements from ground-penetrating radar measurements [J]. Remote Sensing, 2021, 14(1): 34. |
[1] | 李骏1,何超1,刘震2,3,顾兴宇2,3. 基于多尺度加载试验的沥青路面结构参数设计方法[J]. 重庆交通大学学报(自然科学版), 2024, 43(1): 31-38. |
[2] | 李志勇, 朱尚书. 明色化铺装材料的路用性能研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 37-43. |
[3] | 李忠玉, 冯汉卿, 丛林, 陈永辉. 基于支持向量机的水泥道面脱空检测与判定方法[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 66-73. |
[4] | 姚爱玲1,王军伟2,许敏3,杨孟乾4,杨涛1. 水泥稳定碎石基层沥青路面隆起开裂数值分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(06): 105-111. |
[5] | 赵全满,任瑞波,刘瑶,李志刚,户桂灵. 城市道路检查井井周路面破坏机理[J]. 重庆交通大学学报(自然科学版), 2021, 40(05): 87-94. |
[6] | 王民1,2,尚飞1,肖丽1,包广志3. 钢桥面浇注式沥青铺装复合梁疲劳损伤规律分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(03): 84-88. |
[7] | 李升连1,梁乃兴2,曾晟2. 采集方法对数字图像沥青混合料离析评价影响研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(03): 103-107. |
[8] | 周建昆1,曹源文2,温永杰2,赵江1,白丽萍3. 不同高度下摊铺路面的数字图像差异性研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 89-94. |
[9] | 李志勇,黄桦. 基于明色铺装对隧道照明质量的研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(02): 101-107. |
[10] | 李浩1,2,王选仓1,房娜仁1,许新权3. 基于敏感度的沥青路面结构应力传递行为[J]. 重庆交通大学学报(自然科学版), 2021, 40(01): 119-126. |
[11] | 刘洪辉,李晓娟. 水性环氧乳化沥青高温流变性能研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 67-73. |
[12] | 周水文1,2,3,张晓华1,2,3,张蓉1,2,3,赵坤4,王建壮1,2,3. 环路热管融冰雪效果影响因素试验分析[J]. 重庆交通大学学报(自然科学版), 2020, 39(10): 85-92. |
[13] | 李海莲1,2,林梦凯1,2,王起才1,2. 高速公路沥青路面使用性能模糊区间评价方法研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(09): 80-87. |
[14] | 张争奇1,唐周鸣1,2,李杨1,3,王东4. 自融雪剂对沥青混合料性能影响研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(07): 92-99. |
[15] | 马丽英,李茂其,曹源文,董琴琴. 沥青桥面压实均匀性实时检测方法研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(02): 69-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||