[1] 张宝晨, 耿雄飞, 李亚斌, 等. 船舶智能航行技术研发进展[J]. 科技导报, 2022, 40(14): 51-56.
ZHANG Baochen, GENG Xiongfei, LI Yabin, et al. Development status and trend of intelligent navigation technology[J]. Science & Technology Review, 2022, 40(14): 51-56.
[2] 马勇, 王雯琦, 严新平. 面向新一代航运系统的船舶智能航行技术研究进展[J]. 中国科学: 技术科学, 2023, 53(11): 1795-1806.
MA Yong, WANG Wenqi, YAN Xinping. Research progress of vessel intelligent navigation technology for the new generation of waterborne transportation system[J]. Scientia Sinica (Technologica), 2023, 53(11): 1795-1806.
[3] 张英俊, 翟鹏宇. 海运船舶自主避碰技术研究进展与趋势[J]. 大连海事大学学报, 2022, 48(3): 1-11.
ZHANG Yingjun, ZHAI Pengyu. Research progress and trend of autonomous collision avoidance technology for marine ships[J]. Journal of Dalian Maritime University, 2022, 48(3): 1-11.
[4] 胡鑫. 基于视频分析的海上航行船舶号灯识别方法[D]. 大连: 大连海事大学, 2021.
HU Xin. Recognition Method of Signal Lights of Ships Sailing at Sea Based on Video Analysis[D]. Dalian: Dalian Maritime University, 2021.
[5] 朱金善, 孙立成, 胡江强, 等. 基于克隆优化的船舶号灯神经网络识别模型[J]. 大连海事大学学报, 2015, 41(2): 41-45.
ZHU Jinshan, SUN Licheng, HU Jiangqiang, et al. Neural network recognition model of ship lights based on clonal optimization[J]. Journal of Dalian Maritime University, 2015, 41(2): 41-45.
[6] NISHINA T, SHIMIZU E. A preliminary study on obstacle detection system for night navigation[C]//2020 IEEE/SICE International Symposium on System Integration (SII). January 12-15, 2020. Honolulu, HI, USA. IEEE, 2020: 1107-1112.
[7] 杨庆江, 冯新宇, 李钊枢, 等. 基于改进帧间差分的动态目标检测算法[J]. 黑龙江科技大学学报, 2022, 32(6): 779-783.
YANG Qingjiang, FENG Xinyu, LI Zhaoshu, et al. Dynamic target detection algorithm based on improved inter-frame difference[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(6): 779-783.
[8] VIJAYAN M, MOHAN R. A universal foreground segmentation technique using deep-neural network[J]. Multimedia Tools and Applications, 2020, 79(47): 34835-34850.
[9] ADIBHATLA V A, CHIH H C, HSU C C, et al. Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4411-4428.
[10] 任维贺, 李康, 张月, 等. 目标大气扰动检测中的图像处理方法综述[J]. 红外与激光工程, 2023, 52(10): 175-193.
REN Weihe, LI Kang, ZHANG Yue, et al. A review of image processing methods in target atmospheric disturbance detection[J]. Infrared and Laser Engineering, 2023, 52(10): 175-193.
[11] 高良鹏, 赵博文, 简文良. 基于Faster-YOLOv8网络模型的车载交通标志检测算法研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(8):114-123.
GAO Liangpeng, ZHAO Bowen, JIAN Wenliang. Vehicle-mounted traffic sign detection algorithm based on Faster-YOLOv8 network model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(8): 114-123.
[12] 柴亚琴, 刘秀平, 宋鑫, 等. 基于改进GMM与帧差法的运动棉杂率分析算法研究[J]. 光电子·激光, 2024, 35(2): 171-179.
CHAI Yaqin, LIU Xiuping, SONG Xin, et al. Research on moving cotton impurity rate analysis algorithm based on improved GMM and frame difference method[J]. Journal of Optoelectronics · Laser, 2024, 35(2): 171-179.
[13] 刘佳浩, 高军伟. 基于机器视觉与BA-BP的苹果分级系统研究[J]. 中国农业科技导报, 2024, 26(11): 117-125.
LIU Jiahao, GAO Junwei. Research on apple grading system based on machine vision and BA-BP[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 117-125. |