[1] 邓萍, 刘淑龙. 基于FGM-SVR组合模型的港口吞吐量预测[J]. 重庆交通大学学报(自然科学版), 2023, 42(8): 132-138.
DENG Ping, LIU Shulong. Port throughput prediction based on FGM-SVR combined model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(8): 132-138.
[2] 刘宇璐, 陈冬林. 基于ARIMA模型的武汉港货物吞吐量预测研究[J]. 中国水运(上半月), 2016, 37(10): 45-47.
LIU Yulu, CHEN Donglin. Research on cargo throughput prediction of Wuhan Port based on ARIMA model [J]. China Water Transport, 2016, 37(10): 45-47.
[3] 谢新连, 王余宽, 许小卫, 等. 基于随机森林算法的港口集装箱吞吐量预测方法[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 15-20.
XIE Xinlian, WANG Yukuan, XU Xiaowei, et al. Port container throughput forecasting method based on random forest algorithm[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(2): 15-20.
[4] 陈旭, 李典, 张利华, 等. 基于改进支持向量机(SVM)模型的荆州港吞吐量预测[J]. 水运工程, 2020(3): 38-42.
CHEN Xu, LI Dian, ZHANG Lihua, et al. Port throughput forecast of Jingzhou Port based on improved SVM model[J]. Port & Waterway Engineering, 2020(3): 38-42.
[5] 王凤武, 张晓博, 吉哲, 等. 基于多变量LSTM模型的青岛港集装箱吞吐量预测[J]. 重庆交通大学学报(自然科学版), 2022, 41(10): 54-61.
WANG Fengwu, ZHANG Xiaobo, JI Zhe, et al. Container throughput prediction of Qingdao Port based on multivariate LSTM model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(10): 54-61.
[6] 张聪, 许浩然, 詹炜, 等. 融合预训练的港口吞吐量LSTM预测模型[J]. 科学技术与工程, 2023, 23(32): 13910-13916.
ZHANG Cong, XU Haoran, ZHAN Wei, et al. Integrate pretraining with LSTM for cargo throughput forecasting[J]. Science Technology and Engineering, 2023, 23(32): 13910-13916.
[7] 杨宇鸽, 郝杨杨, 王逸文. 基于NeuralProphet-LSTM组合模型的港口货物吞吐量预测[J]. 中国航海, 2023, 46(4): 85-92.
YANG Yuge, HAO Yangyang, WANG Yiwen. Prediction of port cargo throughput using NeuralProphet-LSTM combination model[J]. Navigation of China, 2023, 46(4): 85-92.
[8] 王凤武, 张晓博, 阎际驰, 等. 基于LSTM的上海港集装箱吞吐量预测[J]. 中国航海, 2022, 45(2): 109-114.
WANG Fengwu, ZHANG Xiaobo, YAN Jichi, et al. Prediction of container throughput of Shanghai Port with LSTM[J]. Navigation of China, 2022, 45(2): 109-114.
[9] 贾鹏, 陆圣斓, 邬桐, 等. 基于TEI@I的港口集装箱吞吐量预测方法研究[J]. 系统科学与数学, 2022, 42(12): 3321-3338.
JIA Peng, LU Shenglan, WU Tong, et al. Forecasting of port container throughput based on TEI@I methodology[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(12): 3321-3338.
[10] CUONG T N, LONG L N B, KIM H S, et al. Data analytics and throughput forecasting in port management systems against disruptions: A case study of Busan Port[J]. Maritime Economics & Logistics, 2023, 25(1): 61-89.
[11] WANG Jianzhou, SHAO Yuanyuan, JIANG He, et al. A multi-variable hybrid system for port container throughput deterministic and uncertain forecasting[J]. Expert Systems with Applications, 2024, 237: 121546.
[12] 曹莹, 陈旭, 张跃博, 等. 基于ARIMA-BP神经网络组合预测的港口吞吐量预测[J]. 物流技术, 2023, 42(12): 84-91.
CAO Ying, CHEN Xu, ZHANG Yuebo, et al. Port throughput prediction based on ARMI-BP neural network combination prediction[J]. Logistics Technology, 2023, 42(12): 84-91. |