中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (8): 90-98.DOI: 10.3969/j.issn.1674-0696.2025.08.12

• 交通+大数据人工智能 • 上一篇    

基于混合注意力机制的CNN-BiLSTM模型的温州港集装箱吞吐量预测

丁天明,高翎嘉   

  1. (浙江海洋大学 船舶与海运学院,浙江 舟山 316022)
  • 收稿日期:2024-08-29 修回日期:2024-10-10 发布日期:2025-09-05
  • 作者简介:丁天明(1968—),男,浙江诸暨人,教授,主要从事航海技术及海事安全方面的研究。E-mail:dtm8302@126.com 通信作者:高翎嘉(2000—),男,浙江台州人,硕士,主要从事交通运输规划与管理方面的研究。E-mail:937852994@qq.com

Container Throughput Forecasting of Wenzhou Port Based on CNN-BiLSTM Model with Hybrid Attention Mechanism

DING Tianming,GAO Lingjia   

  1. (Shipping and Ocean Transportation College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang ,China)
  • Received:2024-08-29 Revised:2024-10-10 Published:2025-09-05

摘要: 为了更精确地预测港口集装箱吞吐量,提出了一种融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的预测模型,并引入多种注意力机制,以全面捕捉数据的全局特征。模型中将影响指标和历史集装箱吞吐量数据结合,作为多变量输入进行预测。结果表明:与传统的LSTM预测模型和CNN-LSTM组合模型相比,该模型的平均绝对百分比误差(MAPE)和均方根误差(RMSE)均有所降低,模型拟合度(R2)显著提高。尤其在数据波动明显的情况下,该模型的预测结果更加精确,有助于港航企业及时调整规划决策与经营策略。

关键词: 交通运输工程;集装箱吞吐量预测;混合注意力机制;多变量输入;CNN-BiLSTM预测模型

Abstract: In order to predict port container throughput more accurately, a prediction model that integrated convolutional neural networks (CNN) with bidirectional long short-term memory (BiLSTM) networks was proposed, and multiple attention mechanisms were also introduced to comprehensively capture the global features of the data. In the proposed model, the influencing indicators and historical container throughput data were combined as multivariate inputs for prediction. The results indicate that, compared to traditional LSTM prediction models and CNN-LSTM hybrid models, both the mean absolute percentage error (MAPE) and root mean square error (RMSE) of the proposed model are reduced, and the model fitting degree (R2) is significantly improved. Notably, in instances of significant data fluctuations, the proposed model achieves more accurate prediction results, which helps port and shipping enterprises adjust their planning decisions and business strategies in a timely manner.

Key words: traffic and transportation engineering; container throughput prediction; hybrid attention mechanism; multivariate input; CNN-BiLSTM prediction model

中图分类号: