[1] XU Yadong, YAN Xiaoan, FENG Ke, et al. Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery[J]. Reliability Engineering & System Safety, 2022, 226: 108714.
[2] YU Shihang, PANG Shanchen, SONG Limei, et al. TSoft-Net: A novel transfer soft thresholding network based on self-attention for intelligent fault diagnosis of rotating machinery[J]. Measurement, 2024, 227: 114237.
[3] WANG Qiang, XU Feiyun. A novel rolling bearing fault diagnosis method based on adaptive denoising convolutional neural network under noise background[J]. Measurement, 2023, 218: 113209.
[4] 张洪亮, 余其源, 秦超群, 等. 基于信息融合及双连接注意力残差网络的轴承故障诊断[J]. 振动与冲击, 2023, 42(20): 114-123.
ZHANG Hongliang, YU Qiyuan, QIN Chaoqun, et al. Bearing fault diagnosis based on double-connected attention residual network and information fusion[J]. Journal of Vibration and Shock, 2023, 42(20): 114-123.
[5] YAN Xiaoan, YAN Wangji, XU Yadong, et al. Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network[J]. Mechanical Systems and Signal Processing, 2023, 202: 110664.
[6] LIANG Pengfei, WANG Bin, JIANG Guoqian, et al. Unsupervised fault diagnosis of wind turbine bearingvia a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds[J]. Engineering Applications of Artificial Intelligence, 2023, 118: 105656.
[7] 牛礼民, 胡超, 万凌初,等.基于深度迁移学习的车辆悬架高频异常振动故障诊断[J]. 重庆交通大学学报(自然科学版), 2024, 43(3): 121-127.
NIU Limin, HU Chao, WAN Lingchu, et al. Fault diagnosis of high-frequency abnormal vibration of vehicle suspension based on deep transfer learning [J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43 (3):121-127.
[8] LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. Improving convolutional networks with self-calibrated convolutions[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). USA. IEEE, 2020: 10093-10102.
[9] WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]∥2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, NV, USA. IEEE, 2018: 1451-1460.
[10] GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662.
[11] ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4681-4690.
[12] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141.
[13] ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: Split-attention networks[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, LA, USA. IEEE, 2022: 2735-2745.
[14] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 510-519.
[15] ZHOU Daquan, HOU Qibin, CHEN Yunpeng, et al. Rethinking bottleneck structure for efficient mobile network design[C]∥ Computer Vision-ECCV 2020. Springer, 2020: 680-697.
[16] XIE Saining, GIRSHICK R, DOLLR P, et al. Aggregated residual transformations for deep neural networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 5987-5995.
[17] LI Ke, PING Xueliang, WANG Huaqing, et al. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis[J]. Sensors, 2013, 13(6): 8013-8041.
[18] 迟玉伦, 高程远, 朱欢欢,等.基于GMVMD-ECA-ResNet-MA在生产噪声环境下轴承套圈磨削烧伤识别[J]. 振动与冲击, 2025, 44(17): 295-312.
CHI Yulun, GAO Chengyuan, ZHU Huanhuan, et al. Identification of bearing ring grinding burns in production noise environment based on GMVMD-ECA-ResNet-MA [J]. Journal of Vibration and Shock, 2025, 44 (17): 295-312. |