中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (11): 93-100.DOI: 10.3969/j.issn.1674-0696.2025.11.12

• 智慧交通基础设施 • 上一篇    

基于多分辨率分形的风积砂路面抗滑性能研究

孙朝云,刘荟英,翁宇涵,顾瀛彬   

  1. (长安大学 信息工程学院,陕西 西安 710064)
  • 收稿日期:2024-12-10 修回日期:2025-07-16 发布日期:2025-11-27
  • 作者简介:孙朝云(1962—),女,陕西西安人,教授,博士,主要从事道路交通智能检测,道路养护方面的研究。E-mail:chysun@chd.edu.cn 通信作者:刘荟英(2001—),女,河南新乡人,硕士研究生,主要从事道路抗滑性能方面的研究。E-mail:2023124008@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(52178407)

Skid Resistance Performance of Aeolian Sand Pavement Based on Multi-resolution Fractals

SUN Zhaoyun, LIU Huiying, WENG Yuhan, GU Yingbin   

  1. (College of Information Engineering, Chang’an University, Xi’an 710064, Shaanxi, China)
  • Received:2024-12-10 Revised:2025-07-16 Published:2025-11-27

摘要: 沥青路面的三维纹理特征对于评估道路的抗滑性能具有决定性影响。现有研究主要集中于路面纹理的统计几何属性,尽管已有部分研究探讨了路面纹理的自仿射相似特性与频谱特性,但其与路面抗滑性能的内在关联机制仍然需要进一步研究。提出了一种多分辨率分形分析方法对路面纹理进行多尺度分析。首先,融合小波变换与分形理论,对不同积砂状态下的3种典型级配试件纹理进行小波分解。然后,逐层重构高频与低频纹理,提取分形特征和频谱特征,构建多分辨率分形数据集。最后,对比主流机器学习模型XGBoost、CatBoost、NGBoost和LightGBM,分析验证所构建的多分辨率分形数据集的有效性与鲁棒性。结果表明:LightGBM的拟合优度最高达到了88.90%,均方根误差为3.59。此外,还揭示了不同积砂状态下,单重分形维数D随着分解层数的递进呈现先增加后减少,最终趋于稳定的变化规律。并且,进一步探究了3种不同级配试件的多重分形特性,揭示了它们在多重分形谱上的差异。

关键词: 道路工程; 沥青路面;三维纹理;小波变换;分形特征;多尺度;抗滑性能

Abstract: The three-dimensional texture properties of asphalt pavement have a decisive influence on the evaluation of the skid resistance of roads. Existing studies mainly focus on the statistical geometric properties of the pavement texture. Although some studies have explored the self-affine similarity and spectral properties of pavement texture, its intrinsic correlation mechanism with the skid resistance of pavements still needs to be further investigated. Therefore, a multi-resolution fractal analysis method was proposed for multi-scale analysis of pavement texture. Firstly, by integrating wavelet transform and fractal theory, the wavelet decomposition was performed on the textures of three typical graded specimens under different sand accumulation states. Then, the high and low frequency textures were reconstructed layer by layer, and the fractal and spectral features were extracted to construct a multi-resolution fractal data set. Finally, the effectiveness and robustness of the constructed multi-resolution fractal dataset was analyzed and verified by comparing the mainstream machine learning models such as XGBoost, CatBoost, NGBoost and LightGBM. The results show that LightGBM has the highest goodness of fit, with an R2 of 88.90% and a root mean square error of 3.59. In addition, it is revealed that under different sand accumulation conditions, the single fractal dimension D exhibits a variation rule of first increasing and then decreasing as the number of decomposition layers progresses, ultimately tending towards stabilization. Moreover, the multiple fractal characteristics of three different graded samples are furtherly investigated, revealing their differences in multiple fractal spectra.

Key words: highway engineering; asphalt pavement; 3D texture; wavelet transform; fractal features; multiscale; skid resistance

中图分类号: