中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2010, Vol. 29 ›› Issue (5): 791-795.

• • 上一篇    下一篇

基于双层规划的区域综合运输网合理规模研究

霍娅敏, 陈坚, 陈玲娟   

  1. 西南交通大学交通运输学院, 四川 成都 610031
  • 收稿日期:2010-06-05 修回日期:2010-07-09 出版日期:2010-10-15 发布日期:2015-01-22
  • 作者简介:霍娅敏(1965—),女,重庆市人,副教授,硕士,主要研究方向为区域运输网规划、城市公共交通等。E-mail:huoyamin@163.com。
  • 基金资助:
    中央高校基本科研专项资金资助项目( 2010XS24 )

Reasonable Scale of Integrated Transportation Network Based on Bi-level Programming

HUO Ya-min, CHEN Jian, CHEN Ling-juan   

  1. School of Traffic & Transportation Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Received:2010-06-05 Revised:2010-07-09 Online:2010-10-15 Published:2015-01-22

摘要: 综合运输网合理规模是区域综合运输规划研究的核心内容之一,也是实现综合运输可持续发展的重要控制 指标。在对区域综合运输网结构分析的基础上,扩展了交通网络平衡配流方法,将运输方式选择与配流模型进行 整合,形成了??方式-路径配流模型(MPUE)。以社会总成本最优为上层目标函数,??方式-路径配流模型为下 层规划,建立了综合运输网合理规模确定的双层规划模型,并采用模拟退火优化算法对模型进行求解。最后将模 型运用于成渝经济区综合运输网合理规模的计算中,说明模型科学有效。

关键词: 综合运输, 合理规模, 双层规划, 配流模型

Abstract: Reasonable scale of integrated transportation network is one of the core contents of research on regional integrated transportation planning and furthermore it's a key control index to achieve sustainable development of integrated transportation. Based on the structural analysis of regional integrated transportation network, traffic network equilibrium assignment method is expanded, which integrates transport mode choice and assignment model to form“mode-path”assignment model (MPUE, Mode-Path User Equilibrium ). In addition, bi-level programming model on reasonable scale of integrated transport network is constructed, whose upper objective function is to realize the optimal social cost and lower objective function is MPUE. And then it’s solved by simulating annealing optimization algorithm. At last, the proposed model is applied to the calculation of reasonable scale of integrated transportation network in Chengdu-Chongqing Economic Zone, which proves that the model is scientific and effective

Key words: integrated transportation, reasonable scale, bi-level programming, assignment model

中图分类号: