|
平衡主线和匝道交通运行的强化学习型匝道控制研究
章立辉1,2,余宏鑫1,3,熊满初1,2,胡文琴1,王亦兵1
2023, 42(4):
87-97.
DOI: 10.3969/j.issn.1674-0696.2023.04.12
考虑合流区域主线和匝道的交通流运行状态,提出了一种基于深度强化学习的鲁棒自适应匝道控制模型——DRLARM模型。根据交通流运行特征,构造了平衡主线交通效率和匝道排队长度的强化学习奖励函数;为适应动态变化的交通环境,采用多交通流场景混合训练控制模型,在不同拥堵成因、不同拥堵时长、不同需求分布等测试场景下开展仿真实验,对比分析了无控制及DRLARM、ALINEA和PI-ALINEA模型控制的车辆平均行程时间A、车道占有率o、匝道排队长度W和匝道损失时间比P等评价指标。研究表明:DRLARM模型控制的平均行程时间A相比无控工况节省了22%,略好于ALINEA模型,与PI-ALINEA模型控制效果相当;DRLARM模型在不同测试场景下产生的匝道损失时间比P较稳定,匝道排队长度W绝对值相较于ALINEA模型和PI-ALINEA模型均缩短了约16%;深度强化学习方法兼顾了通行效率和路权公平性,训练所得DRLARM模型在动态交通条件下表现出良好的鲁棒性。
参考文献 |
相关文章 |
计量指标
|