[1] 刘文武.积分第二中值定理“中间点”的渐近性分析[J].数学
的实践与认识,2
005, 35(9): 221-225.
LIU Wen-wu.Analysis on the asymptoticity of the intermediate
point in the second mean value theorem for integrals [J].Mathematics
in Practice and Theory,2005,3
5(9): 221-225.
[2] 吴至友,夏雪.积分第二中值定理“中间点”的渐近性[J].数学
的实践与认识,2
004, 34(3): 171-176.
WU Zhi-you,XIA Xue.On the second mean value theorem for
integrals [J].Mathematics in Practice and Theory,2004,3
4(3),
171-176.
[3] 邹兆南,谭远顺.Cauchy 微分中值定理的多种探究式证明法
[J].重庆交通大学学报: 自然科学版,2
009,2
8(5): 976-978.
ZOU Zhao-nan,TAN Yuan-shun.Several exploration methods
to prove the cauchy mean theorem[J].Journal of Chongqing Jiaotong
University: Natural Science,2009, 28(5): 976-978.
[4] Ricardo Almeida,An elementary proof Of a converse mean-value
Theorem[J].International Journal of Mathematical Education in
Science and Technology,2008,39(8): 1110-1111.
[5] Tong J and Braza P A.A converse of the mean value theorem[J].Amer.Math.Monthly,1997 , 104(10): 939-942.
[6] TONG Jing-cheng.Note the mean value theorems for differentials
and integrals[J].The Journal of the Elisha Mitchell Scientific Society,
1998, 114(4): 225-226.
[7] 伍建华.关于第二积分中值定理渐近性的一个注记[J].武汉
化工学院学报, 2006, 28(4): 73-74.
WU Jian-hua.A note on asymptotic in second mean value theorem
for integrals [J].Journal of Wuhan Institute of Chemical
Technology,2006,2
8(4): 73-74.
[8] 伍建华.第二积分中值定理中ξ 的渐近性一般性证明[J].高
等数学研究, 2006,9
(4): 30-31.
WU Jian-hua.The second integral mean-value theorem ξ asymptotic
behavior of the general proof[J].Studies in College Mathematics,
2
006,9
(4):
30-31. |