中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2022, Vol. 41 ›› Issue (02): 137-145.DOI: 10.3969/j.issn.1674-0696.2022.02.20

• 交通装备 • 上一篇    下一篇

基于全局优化算法的增程式电动汽车模糊控制策略

牛礼民1,张泉泉1,朱奋田1,宗发新1,郑飞宇2   

  1. (1. 安徽工业大学 机械工程学院,安徽 马鞍山 243032; 2. 国网固镇县有限公司,安徽 蚌埠233700)
  • 收稿日期:2020-09-18 修回日期:2020-11-15 发布日期:2022-02-21
  • 作者简介:牛礼民(1976—),男,安徽肥东人,副教授,博士后,主要研究方向为混合动力汽车控制策略。E-mail:niulmdd@163.com 通信作者:张泉泉(1995—),男,安徽固镇人,硕士研究生,主要研究方向为混合动力汽车控制策略。E-mail:1615399578@qq.com
  • 基金资助:
    安徽省高校重点实验室开放基金资助项目(XJSK202104);浙江省激光加工机器人重点实验室/中国机械工业激光精细加工与检测技术重点实验室开放基金项目(lzsy-07)

Fuzzy Control Strategy for Extended Range Electric Vehicle Based on Global Optimization Algorithm

NIU Limin1, ZHANG Quanquan1,ZHU Fentian1,ZHONG Faxin1,ZHENG Feiyu2   

  1. (1. School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China; 2. Guzhen County Power Supply Company, Bengbu 233700, Anhui, China)
  • Received:2020-09-18 Revised:2020-11-15 Published:2022-02-21

摘要: 针对传统模糊控制中规则库制定单一、动力系统与控制策略参数协调性不高等问题,提出一种基于全局优化算法的增程式电动汽车模糊控制策略。根据增程器最优效率曲线,分析并提取动态规划算法在不同需求及动力部件状态下的多能源分配规则,并结合传统工程经验作为模糊控制规则库制定依据;以燃油经济性为优化目标,利用粒子群算法优化整车动力部件与隶属度参数,获取具有全局优化性的EREV能量分配。最后,在MATLAB/Simulink中建立整车模糊控制策略模型,嵌入到ADVISOR中仿真并进行硬件在环测试。结果表明:所提出的控制策略适用于多种工况,与原车功率跟随控制策略相比,能控制动力电池SOC在合理范围内,同时提高整车燃油经济性。

关键词: 车辆工程;EREV;动态规划;粒子群算法;模糊控制策略;全局优化

Abstract: Aiming at the problems of single rule base formulation and low coordination between power system and control strategy parameters in traditional fuzzy control, a fuzzy control strategy of extended-range electric vehicle based on global optimization algorithm was proposed. According to the optimal efficiency curve of the extender, the multi-energy distribution rules of dynamic programming algorithm under different demands and power parts state were analyzed and extracted and combined with traditional engineering experience as the basis for the formulation of fuzzy control rule base. With fuel economy as the optimization goal, particle swarm optimization algorithm was used to optimize the vehicle power components and membership parameters to obtain globally optimized EREV energy distribution. Finally, the fuzzy control strategy model of the whole vehicle was established in MATLAB/Simulink and embedded in ADVISOR for simulation and hardware in the loop test. The results show that the proposed control strategy is suitable for a variety of operating conditions. Compared with the original vehicle power following control strategy, it can control the SOC of the power battery within a reasonable range and improve the fuel economy of the vehicle.

Key words: vehicle engineering; EREV; dynamic programming; particle swarm algorithm; fuzzy control strategy; global optimization

中图分类号: