[1] 张喜刚, 刘高, 马军海,等. 中国桥梁技术的现状与展望[J]. 科学通报, 2016, 61(4):415-425.
ZHANG Xigang, LIU Gao, MA Junhai,et al. Status and prospect of technical development for bridges in China [J]. Chinese Science Bulletin, 2016, 61:415-425
[2] 鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5):1-11.
BAO Yuequan, LI Hui. Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52(5):1-11.
[3] 吴焜. 基于BIM的桥梁检测信息管理与智能评估系统[D]. 厦门: 厦门大学, 2018.
WU Kun.Bridge Inspection Information Management and Intelligent Assessment System Based on BIM [D]. Xiamen: Xiamen University, 2018.
[4] 周建庭, 韩金梅, 蒋震, 等. 桥梁一体化信息平台系统:2017SR0
52047[CP]. 2017-02-22.
ZHOU Jianting, HAN Jinmei, JIANG Zhen, et al. Bridge Integrated Information Platform System:2017SR052047[CP].2017-02-22.
[5] 李科. 加固后混凝土梁桥技术状态评定方法研究[D]. 重庆: 重庆交通大学, 2015.
LI Ke.Study on Method of Technical Condition Assessment for Streng-thened Concrete Girder Bridges [D]. Chongqing: Chongqing Jiaotong University, 2015.
[6] 汪乾松. 对现有桥梁状况评价体系补充及细化研究[D]. 重庆: 重庆交通大学, 2016.
WANG Qiansong.The Supplement of Evaluation System of the Current-Existed Bridges [D]. Chongqing: Chongqing Jiaotong University, 2016.
[7] 李聪. 桥梁维修加固后评估方法研究[D]. 南京: 东南大学, 2017.
LI Cong. Study on the Evaluation Methods of Bridge Maintenance and Reinforcement [D]. Nanjing: Southeast University, 2017.
[8] 钟继卫, 王波, 王翔, 等. 桥梁智能检测技术研究与应用[J]. 桥梁建设, 2019(增刊1):1-6.
ZHONG Jiwei, WANG Bo, WANG Xiang, et al. Research of bridge intelligent inspection technology and application [J]. Bridge Construc-tion, 2019(Sup 1):1-6.
[9] 周建庭, 辛景舟, 张洪, 等. 用于混凝土索塔表观裂缝检测的双足机器人: CN201610999072.0 [P].2018-06-15.
ZHOU Jianting, XIN Jingzhou, ZHANG Hong,et al. Biped Robot for Detecting Apparent Cracks of Concrete Pylon: CN201610999072.0[P]. 2018-06-15.
[10] CHA Y, CHOI W, BUYUKOZTURK O. Deep learning-based crack damage detection using convolutional neural networks [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
[11] ATHA D J, JAHANSHAHI M R. Evaluation of deep learning approa-ches based on convolutional neural networks for corrosion detection [J]. Structural Health Monitoring, 2017, 17(5):1110-1128.
[12] XU Yang, WEI Shiyin, BAO Yuequan, et al. Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network [J]. Structural Control and Health Monitoring, 2019, 26(3):e2313.
[13] JIANG Shang, ZHANG Jian. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system [J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 35(6): 549-564.
[14] ZHANG Xinxiang, RAJAN D, STORY B. Concrete crack detection using context-aware deep semantic segmentation network [J]. Com-puter-Aided Civil and Infrastructure Engineering, 2019, 34(11):951-971.
[15] XIA Runchuan, ZHOU Jianting, ZHANG Hong, et al.Quantitative study on corrosion of steel strands based on self-magnetic flux leakage[J]. Sensors, 2018, 18 (5):1396.
[16] XIA Runchuan, ZHOU Jianting, ZHANG Hong,et al. Experimental study on corrosion of unstressed steel strand based on metal magnetic memory[J]. KSCE Journal of Civil Engineering, 2019, 23(3): 1320-1329.
[17] ZHANG Hong, LIAO Leng, ZHAO Ruiqiang, et al.A new judging criterion for corrosion testing of reinforced concrete based on self-magnetic flux leakage [J]. International Journal of Applied Electromagnetics & Mechanics, 2017, 54(1):123-130.
[18] QIU Junli, ZHANG Hong, ZHOU Jianting, et al. Experimental analysis of the correlation between bending strength and SMFL of corroded RC beams [J]. Construction and Building Materials, 2019, 214: 594-605.
[19] PANG Caoyuan, ZHOU Jianting, ZHAO Ruiqiang, et al. Research on internal force detection method of steel bar in elastic and yielding stage based on metal magnetic memory [J]. Materials, 2019, 12(7): 1167.
[20] PANG Caoyaun, ZHOU Jianting, ZHAO Qingyuan,et al. A new method for internal force detection of steel bars covered by concrete based on the metal magnetic memory effect [J]. Metals, 2019, 9(6): 661.
[21] 周建庭, 郑丹. 保障我国桥梁安全的战略思考[J]. 中国工程科学, 2017, 19(6): 27-37.
ZHOU Jianting, ZHENG Dan. Safety of highway bridges in China[J]. Strategic Study of CAE, 2017, 19(6): 27-37.
[22] 刘小玲, 汪炳, 黄侨, 等. 基于证据推理框架的斜拉桥状态评估模型[J].华南理工大学学报(自然科学版), 2020, 48(6): 69-76.
LIU Xiaoling, WANG Bing, HUANG Qiao, et al. Condition assessment model for cable-stayed bridges based on evidence reasoning framework [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(6): 69-76.
[23] MARTINEZ P, MOHAMED E, MOHSEN O,et al. Comparative study of data mining models for prediction of bridge future conditions [J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019108.
[24] 夏烨, 王鹏, 孙利民. 基于多源信息的桥梁网级评估方法[J]. 同济大学学报(自然科学版), 2019, 47(11): 1574-1584.
XIA Ye, WANG Peng, SUN Limin. A condition assessment method for bridges at network level based on muti-source information. [J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1574-1584.
[25] 袁阳光, 陈笑, 韩万水, 等. 在役混凝土桥梁非平稳抗力劣化模型建立与更新[J]. 中国公路学报, 2019, 32(12): 145-155.
YUAN Yangguang, CHEN Xiao, HAN Wanshui,et al. Establishment and updating of nonstationary random resistance deterioration model for existing concrete bridges [J ]. China Journal of Highway of Transport, 2019, 32(12): 145-155.
[26] 刘朝峰, 曹纯博, 刘才玮, 等. 桥梁结构服役状态的动态分级聚类模型[J]. 中国安全科学学报, 2018, 28(9):98-102.
LIU Chaofeng, CAO Chunbo, LIU Caiwei, et al. Dynamic grading clustering method based model for evaluation of service state of bridge structure [J]. China Safety Science Journal, 2018, 28(9):98-102.
[27] XIN Jingzhou, ZHOU Jianting, YANG Xianyi, et al. Bridge struc-ture deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model [J]. Sensors, 2018, 18(1):298.
[28] QIU Dongwei, WANG Tong, YE Qing, et al. A deformation predic-tion approach for supertall building using sensor monitoring system [J]. Journal of Sensors, 2019, 2019:9283584.
[29] YANG Na, BAI Xiaobin. Forecasting structural strains from long-term monitoring data of a traditional Tibetan building [J]. Structural Control and Health Monitoring, 2019, 26(1): e2300.
[30] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20.
SUN Linmin, SHANG Zhiqiang,XIA Ye. Development and prospect of bridge structural health monitoring in the context of big data [J]. China Journal of Highway of Transport, 2019, 32(11): 1-20.
[31] 杨建喜, 周应新, 戴森昊. 基于语义本体的桥梁结构智能化本体模型[J]. 土木工程与管理学报, 2020, 37(3): 26-33.
YANG Jianxi, ZHOU Yingxin, DAI Senhao. Intelligent ontology model of bridge structure based on semantic ontology [J]. Journal of Civil Engineering and Management, 2020, 37(3): 26-33.
[32] 裴岷山, 陈艾荣. 特大型桥梁养护信息融合技术[J]. 桥梁建设, 2019, 49(2):62-67.
PEI Minshan, CHEN Airong. Maintenance technology of major bridges based on information fusion[J]. Bridge Construction, 2019, 49(2):62-67. |