[1] 屈耀辉,李奋,庄德华,等.湿陷性黄土区高铁路基沉降控制综合技术研究[J].重庆交通大学学报(自然科学版),2017,36(3):54-59,64.
QU Yaohui, LI Fen, ZHUANG Dehua, et al. Integrated technology of high-speed railway subgrade settlement control in collapsible loess area [J] . Journal of Chongqing Jiaotong University (Natural Science), 2017,36(3): 54-59,64.
[2] 蒋应军,王翰越,乔怀玉,等.水、干湿及冻融循环作用下水泥改良黄土路基稳定性[J].科学技术与工程,2020,20(35):14592-14599.
JIANG Yingjun, WANG Hanyue, QIAO Huaiyu, et al. Stability of cement-modified loess subgrade under water, wet-dry and freezing thawing cycles [J]. Science Technology and Engineering, 2020, 20(35): 14592-14599.
[3] 冀慧,张涛,刘保健.干湿循环下复合改良黄土剪切力学特性试验研究[J].长江科学院院报,2021,38(8):120-126,132.
JI Hui, ZHANG Tao, LIU Baojian, et al. Experimental study on shear mechanical properties of compound improved loess under wet and dry cycle [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 120-126,132.
[4] 高中南.粉煤灰改良饱和黄土的抗液化强度和特性研究[D].兰州:兰州大学,2018.
GAO Zhongnan. Research on the Liquefaction Resistance and Charac- teristics of Saturated Loess Improved by Fly Ash[D]. Lanzhou: Lan- zhou University, 2018.
[5] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials [J]. Annual Review of Materials Research, 2014, 44(1): 299- 327.
[6] 乔子秦.工业废渣复合固化黄土的强度特性及影响因素研究[D].兰州:兰州大学,2018.
QIAO Ziqin. Study on Strength Characteristics and Influencing Factors of Industrial Residue Composite Solidified Loess [D]. Lanzhou: Lanzhou University, 2018.
[7] 邓永锋,赵余,刘倩雯,等.钢渣的硅系与复合系激发及其在软土固化中的应用[J].中国公路学报,2018,31(11):11-20.
DENG Yongfeng, ZHAO Yu, LIU Qianwen, et al. Na2SiO4 and cement- based activation on steel slag and its application in soft-soil stabilization [J]. China Journal of Highway and Transport, 2018, 31(11): 11-20.
[8] 吴燕开,史可健,胡晓士,等.海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J].岩土工程学报,2019,41(6):1014-1022.
WU Yankai, SHI Kejian, HU Xiaoshi, et al. Experimental study on strength degradation of steel slag+cement solidified soil under seawater erosion [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014-1022.
[9] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilization with alkaline activation [J]. Construction and Building Materials, 2012, 29: 167-174.
[10] YAO K, LI N, CHEN D H, et al. Generalized hyperbolic formula capturing curing period effect on strength and stiffness of cemented clay [J]. Construction and Building Materials, 2019, 199: 63-71.
[11] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil [J]. Soils and Foundations, 2018, 58(3): 716-728.
[12] ANTRONIO F, CLAUDIA V, AGNESE M. On the mechanical behavior of dredged submarine clayey sediments stabilized with lime or cement [J]. Canadian Geotechnical Journal, 2015, 52: 2030-2040.
[13] 朱剑锋,徐日庆,罗战友,等.考虑3种因素影响的硫氧镁水泥固化土修正邓肯-张模型[J].中南大学学报(自然科学版),2020,51(7):1989-2001.
ZHU Jianfeng, XU Riqing, LUO Zhanyou, et al. Modified Duncan-Chang constitutive model for soft soil stabilized by magnesium oxy-sulfate cement considering three effect factors[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 1989-2001.
[14] COTECCHIA F, CHANDLER R J.A general framework for the mechanical behavior of clays[J]. Géotechnique,2000, 50(4): 431-447.
[15] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilizing weak ground conditions through deep soil mixing [J]. Soils and Foundations, 2016, 56(6): 1021-1034.
[16] 郭赢.碱激发矿渣胶凝材料的反应过程及其改性研究[D].深圳:深圳大学,2018.
GUO Ying. Research on the Reaction Process and Modified Performance of Alkali-activated Slag Materials [D]. Shenzhen: Shenzhen University, 2018.
[17] 徐丽阳.杭州软黏土微观结构试验研究[D].杭州:浙江大学,2015.
XU Liyang. Research for Microstructure of Hangzhou Soft Clay[D].Hangzhou: Zhejiang University, 2015. |