[1] 饶昌瑞.重大事件影响背景下的集装箱吞吐量预测方法研究[D].北京:北京交通大学,2021.
RAO Changrui. Container Throughput Prediction Paradigm with Major Events[D]. Beijing: Beijing Jiaotong University, 2021.
[2] 孔琳琳,刘澜,许文秀,等.基于时间序列分析的港口集装箱吞吐量预测分析[J].森林工程,2016,32(5):106-110.
KONG Linlin, LIU Lan, XU Wenxiu, et al. Prediction of the container throughput in a port based on time sequence analysis[J]. Forest Engineering, 2016, 32(5):106-110.
[3] MAJID E, MILAD K, ALI D, et al. A model for port throughput forecasting using Bayesian estimation[J]. Maritime Economics & Logistics, 2021, 23(2): 348-368.
[4] 桂德怀,张显璇.基于三次指数平滑法的上海港集装箱吞吐量预测分析[J].产业与科技论坛,2020,19(24):59-60.
GUI Dehuai, ZHANG Xianxuan. Prediction and analysis of Shanghai port container throughput based on triple exponential smoothing[J]. Industrial & Science Tribune, 2020, 19(24):59-60.
[5] 田雪,王丹丹,王锐月,等.基于灰色模型的港口吞吐量预测研究——以曹妃甸港口为例[J].数学的实践与认识,2018,48(4):280-284.
TIAN Xue, WANG Dandan, WANG Ruiyue, et al. Research for port throughput prediction based on gray model—Taking Caofeidian port as an example[J]. Mathematics in Practice and Theory, 2018, 48(4): 280-284.
[6] 宋长利,靳廉洁,关峰,等.基于支持向量机的大连港主要货种吞吐量预测研究[J].大连海洋大学学报,2019,34(5):752-756.
SONG Changli, JIN Lianjie, GUAN Feng, et al. Major cargos throughput prediction in port of Dalian based on SVM model[J]. Journal of Dalian Ocean University, 2019, 34(5):752-756.
[7] 李广儒,朱庆辉.基于Elman神经网络的港口货物吞吐量预测[J].重庆交通大学学报(自然科学版),2020,39(6):8-12.
LI Guangru, ZHU Qinghui. Forecasting of port cargo throughput based on Elman neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(6):8-12.
[8] 李长安,卢雪琴,吴忠强,等.基于蚁群算法优化反向传播神经网络的港口吞吐量预测[J].计量学报,2020,41(11):1398-1403.
LI Changan, LU Xueqin, WU Zhongqiang, et al. Throughput prediction of port based on back propagation neural network optimized by ant colony algorithm[J]. Acta Metrologica Sinica, 2020, 41(11):1398-1403.
[9] 徐勇.船舶货物集装箱吞吐量精准预测方法[J].舰船科学技术,2020,42(22):208-210.
XU Yong. Research on accurate prediction method of ship cargo container throughput[J]. Ship Science and Technology, 2020, 42(22):208-210.
[10] TANG Shuang,XU Sudong,GAO Jianwen. An optimal model based on multi-factors for container throughput forecasting[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 4124-4131.
[11] 翁志坚,邱晨杰,邱福祥,等.基于马尔科夫优化的灰色GM (1,1)沉降预测模型及应用[J].科学技术与工程,2020,20(29):12065-12070.
WENG Zhijian, QIU Chenjie, QIU Fuxiang, et al. An optimized GM(1,1) grey prediction model based on Markov chain and its application[J]. Science Technology and Engineering, 2020, 20(29):12065-12070.
[12] 王振振,苌道方,朱宗良,等.基于ES-Markov模型的港口集装箱季度吞吐量分析与预测[J].中国航海,2019,42(4):125-130.
WANG Zhenzhen, CHANG Daofang, ZHU Zongliang, et al. Analysis and prediction of port quarterly container throughput with ES-Markov model[J]. Navigation of China, 2019, 42(4):125-130.
[13] 郑刚.基于灰色模型的集装箱货量预测[J].中国航海,2014,37(2):118-121.
ZHENG Gang. Grey model for prediction of container shipment[J]. Navigation of China, 2014, 37(2):118-121.
[14] 王茁,高璐.港口集装箱吞吐量预测方法研究[J].上海工程技术大学学报,2020,34(2):201-206.
WANG Zhuo, GAO Lu. Research on prediction method of port container throughput[J]. Journal of Shanghai University of Engineering Science, 2020, 34(2):201-206.
[15] 姜汝翰.基于灰色模型的青岛港集装箱吞吐量预测研究[D].大连:大连海事大学,2019.
JIANG Ruhan. Research on the Prediction of Container Throughput of Qingdao Port Based on Grey Model[D]. Dalian: Dalian Maritime University, 2019.
[16] 冯宏祥, Manel GRIFOLL, Martinmallofre AGUSTI,等.基于数据分解的上海港集装箱吞吐量预测模型[J].中国航海,2019,42(2):132-138.
FENG Hongxiang, GRIFOLL M, AGUSTI M, et al. Container through-put forecasting model for Shanghai port based on data decomposition method[J]. Navigation of China, 2019, 42(2):132-138.
[17] ZAENURROHMAN, HARIYANTO S, UDJIANI T. Fuzzy time series Markov Chain and Fuzzy time series Chen & Hsu for forecasting[J]. Journal of Physics: Conference Series, 2021, 1943: 012128.
[18] 惠阳,王永岗,彭辉,等.基于优化PSO-BP算法的耦合时空特征下地铁客流预测[J].交通运输工程学报,2021,21(4):210-222.
HUI Yang, WANG Yonggang, PENG Hui, et al. Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics [J]. Journal of Traffic and Transportation Engineering, 2021, 21(4):210-222. |