中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2024, Vol. 43 ›› Issue (2): 65-74.DOI: 10.3969/j.issn.1674-0696.2024.02.09

• 交通+大数据人工智能 • 上一篇    

基于视觉信息加工的草原公路行车安全性分析

王海晓,丁旭,郭敏,吕贞   

  1. (内蒙古农业大学 能源与交通工程学院,内蒙古 呼和浩特 010018)
  • 收稿日期:2023-04-17 修回日期:2023-12-03 发布日期:2024-03-01
  • 作者简介:王海晓(1981—),女,山西忻州人,教授,硕士,主要从事人机交通环境方面的研究。E-mail:wanghx@imau.edu.cn
  • 基金资助:
    内蒙古自治区科技计划项目(2022YFSH0071);内蒙古自治区高等学校创新团队发展计划项目(NMGIRT2304)

Analysis of Driving Safety on Prairie Highway Based on Visual Information Processing

WANG Haixiao,DING Xu,GUO Min,LYU Zhen   

  1. (College of Energy and Traffic Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China)
  • Received:2023-04-17 Revised:2023-12-03 Published:2024-03-01

摘要: 为探究草原公路各典型行车环境驾驶人视觉信息加工模式的差异性,从视觉层面解析草原公路行车安全,基于眼动仪开展草原公路实车实验,提取驾驶人在自由行驶、跟驰、对向来车、后车切入、路侧风险、交叉口6种真实行车环境下的眼动数据。首先,从视觉分配和视觉搜索两个维度构建评价指标体系,采用动态聚类法将驾驶人的视觉兴趣区域划分为5类,将信息熵与马尔可夫链平稳分布理论结合,构建视点分布信息熵量化驾驶人视觉注意分配的复杂度,并引入扫视幅度、扫视速度分析驾驶人对视觉信息的搜索过程。最后,构建基于CRITIC法的加权秩和比评价模型,对不同行车环境下驾驶人的视觉信息加工强度进行了综合评价。结果显示:驾驶人的视点分布在不同行车环境中存在差异,但当前车道始终是驾驶人获取视觉信息的主视区;各视觉评价指标随行车环境的变化呈显著的统计学差异;驾驶人遇到路侧风险时的视觉信息加工强度最大,行车安全性相对更低。

关键词: 交通运输工程; 草原公路;视觉信息加工;马尔可夫链;信息熵;加权秩和比法

Abstract: In order to explore the difference in drivers visual information processing modes in each typical driving environment on prairie highway and analyze the driving safety on prairie highway from the visual level, the real vehicle experiment on prairie highway was conducted based on the eye tracker. The eye movement data of drivers in six real traffic environments were extracted, including free driving, vehicle-following, oncoming vehicles, rear vehicles cut-in, roadside risks and intersections. Firstly, the evaluation indicator system was constructed from two dimensions: visual allocation and visual search. The dynamic clustering method was used to divide the drivers visual area of interest into five categories, and the information entropy was combined with the Markov chain stationary distribution theory to construct the information entropy of fixation point distribution to quantify the complexity of the drivers visual attention allocation. Then the saccade amplitude and saccade velocity were introduced to analyze the drivers search process for visual information. Finally, the weighted rank-sum ratio evaluation model based on the CRITIC method was constructed to comprehensively evaluate the visual information processing intensity of drivers in different driving environments. The results show that the distribution of drivers fixation points varies in different driving environments, but the current lane is always the main viewing area for drivers to obtain visual information. The visual evaluation indicators show significant statistical differences with the change in the driving environment. When drivers encounter roadside risks, the visual information processing intensity is the largest, and the driving safety is relatively lower.

Key words: traffic and transportation engineering; prairie highway; visual information processing; Markov chain; information entropy; weighted rank-sum ratio method

中图分类号: