[1] FARRAR C R, WORDEN K. An introduction to structural health monitoring [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1851): 303-315.
[2] GHAREHBAGHI V R, NOROOZINEJADFARSANGI E, NOORI M, et al. A critical review on structural health monitoring: Definitions, methods, and perspectives [J]. Archives of Computational Methods in Engineering, 2022, 29(4): 2209-2235.
[3] 文鹏,陈桥枫,杨风帆. 基于改进SSI的大跨斜拉桥模态参数识别研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(1): 45-50.
WEN Peng, CHEN Qiaofeng, YANG Fengfan. Modal parameter identification for large span cable-stayed bridge based on improved stochastic subspace identification [J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(1): 45-50.
[4] SONG Xiaodong, GONG Xiaoyu, LI Guangqi, et al. Continuous monitoring of in-service performance of prestressed concrete continuous bridges with two strengthening measures [J]. Construction and Building Materials, 2022, 321: 126311.
[5] NIKKHOO A, KAREGAR H, KARAMI MOHAMMADI R, et al. An acceleration-based approach for cracklocalization in beams subjected to moving oscillators [J]. Journal of Vibration and Control, 2021, 27(5-6): 489-501.
[6] 秦超, 颜王吉, 孙倩, 等. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222.
QIN Chao, YAN Wangji, SUN Qian, et al. Operational modal analysis of bridge engineering based on Bayesian spectral density approach using a variable separation technique [J]. Engineering Mechanics, 2019, 36(10): 212-222.
[7] BENDAT J S, PIERSOL A G.Random Data Analysis and Measurement Procedures [M]. 4th ed. Hoboken, NJ: Wiley, 2010.
[8] 王晓光,马明,高林丽,等. 基于FDD法的模态参数连续自动识别及频率变异性分析[J]. 重庆交通大学学报(自然科学版), 2023, 42(3): 7-16.
WANG Xiaoguang, MA Ming, GAO Linli, et al. Continuous automatic identification of modal parameters and analysis on frequency variability based on FDD method [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(3): 7-16.
[9] MASJEDIAN M H, KESHMIRI M.A review on operational modal analysis researches: Classification of methods and applications [C] ∥IOMAC 2009-3rd International Operational Modal Analysis Conference, 2009: 707-716.
[10] HOSSEINIKORDKHEILI S A, MOMENI MASSOULEH S H, HAJIREZAYI S, et al. Experimental identification of closely spaced modes using NExT-ERA [J]. Journal of Sound and Vibration, 2018, 412: 116-129.
[11] WORDEN K, CROSS E J. On switching response surface models, with applications to the structural health monitoring of bridges [J]. Mechanical Systems and Signal Processing, 2018, 98: 139-156.
[12] 黄海宾,臧敬刚. 变运营环境下基于混合主成分分析的结构损伤识别方法[J]. 重庆交通大学学报(自然科学版), 2022, 41(7): 51-58.
HUANG Haibin, ZANG Jinggang. Structural damage identification method based on mixed principal component analysis under changing operational environment [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(7): 51-58.
[13] WANG Hao, ZHANG Yiming, MAO Jianxiao, et al. Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model [J]. Engineering Structures, 2019, 192: 220-232.
[14] CHU Xiaolei, CUI Wei, ZHAO Lin, et al. Probabilistic flutter analysis of a long-span bridge in typhoon-prone regions considering climate change and structural deterioration [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215: 104701.
[15] AVENDAO-VALENCIA L D, CHATZI E N, KOO K Y, et al. Gaussian process time-series models for structures under operational variability [J]. Frontiers in Built Environment, 2017, 3: 69.
[16] RASMUSSEN C E, WILLIAMS C K I.Gaussian Processes for Machine Learning [M]. Cambridge Mass.: MIT Press, 2006. |