中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (5): 19-26.DOI: 10.3969/j.issn.1674-0696.2025.05.03

• 桥梁与隧道工程 • 上一篇    

基于深度学习的重载车辆作用下桥梁动力响应预测方法研究

邬晓光1,徐凯澳1,黄骞2   

  1. (1. 长安大学 公路学院,陕西 西安 710064;2.中铁长安重工有限公司,陕西 西安 710032)
  • 收稿日期:2024-06-04 修回日期:2024-08-29 发布日期:2025-05-23
  • 作者简介:邬晓光(1961—),男,湖北黄冈人,教授,博士,主要从事桥梁结构检测与评估、桥梁加固与维修技术方面的研究。E-mail:wxgwst.cn@126.com
  • 基金资助:
    陕西省交通运输厅 2021年度交通科研项目(21-62k);山西交通控股集团有限公司科技项目(2022-JKKJ-16)

Method for Predicting the Dynamic Response of Bridges under Heavy-Load Vehicles Based on Deep Learning

WU Xiaoguang1, XU Kaiao1, HUANG Qian2   

  1. (1. School of Highway, Changan University, Xian 710064, Shaanxi, China; 2. China Railway Changan Heavy Industry Co., Ltd., Xian 710032, Shaanxi, China)
  • Received:2024-06-04 Revised:2024-08-29 Published:2025-05-23

摘要: 为保证重载车辆环境下桥梁的安全性,针对桥梁响应进行预测。首先,选择简支箱梁与两轴重载货车作为研究对象,利用Abaqus软件建立桥梁模型,并利用Dload子程序模拟重载车辆行驶过程。其次,建立自适应噪声完备集合经验模态分解 (CEEMDAN)信号模型,提高响应预测效果。然后,构建长短期记忆(LSTM)循环神经网络对分解后信号进行训练和预测,并与单LSTM模型进行比对。最后,为了验证模型在实际噪音数据下的预测能力,通过添加指定信噪比噪声数据提高数据复杂度,进而验证模型的稳定性。结果表明,通过将CEEMDAN算法应用于LSTM模型对重载环境下桥梁加速度、挠度及应变进行预测,能有效提高模型的预测效果,在各指标上均有提升。

关键词: 桥梁工程;重载车辆;深度学习;信号处理;抗噪性分析

Abstract: In order to ensure the safety of the bridge in the environment of heavy-load vehicles, the bridge response was predicted. Firstly, a simply supported box girder and two-axle heavy-load vehicles were selected as the research objects, Abaqus software was used to establish the bridge model, and the dload subroutine was used to simulate the driving process of heavy-load vehicles. Secondly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) signal decomposition model was established to improve the response prediction effect. Then, a long short term memory (LSTM) cyclic network was constructed to train and predict the decomposed signal, and compared with the single LSTM model. Finally, in order to verify the prediction ability of the proposed model under actual noise data, the data complexity was increased by adding a specified signal-to-noise ratio (SNR) noise data, and then the stability of the proposed model was verified. The results show that applying the CEEMDAN decomposition algorithm to the LSTM model for predicting the acceleration, deflection and strain of bridges under heavy-load environment can effectively improve the prediction effect of the proposed model, with improvements in all indicators.

Key words: bridge engineering; heavy-load vehicles; deep learning; signal processing; noise immunity analysis

中图分类号: