[1] 祖彦宾. 数字经济背景下的高铁货运专列“高铁+电商” 模式分析[J]. 城市轨道交通研究, 2021, 24(10): 296-297.
ZU Yanbin. Analysis of “high-speed railway+E-commerce” mode of high-speed railway freight train under the background of digital economy[J]. Urban Mass Transit, 2021, 24(10): 296-297.
[2] 裴爱晖, 蔡翠, 巩玉朋, 等. 碳达峰背景下推进高铁快运发展研究[J]. 综合运输, 2023, 45(1): 121-124.
PEI Aihui, CAI Cui, GONG Yupeng, et al. Research on promoting the development of CRH express under the background of carbon peak[J]. China Transportation Review, 2023, 45(1): 121-124.
[3] 董晋廷, 朱晓宁, 王力. 面向实时需求的高铁快运列车运输组织方案协同优化研究[J]. 铁道科学与工程学报, 2024, 21(6): 2172-2182.
DONG Jinting, ZHU Xiaoning, WANG Li. The collaborative optimization of high-speed railway freight train transportation organization scheme for real-time demand[J]. Journal of Railway Science and Engineering, 2024, 21(6): 2172-2182.
[4] XU Guangming, ZHONG Linhuan, WU Runfa, et al. Optimize train capacity allocation for the high-speed railway mixed transportation of passenger and freight[J]. Computers & Industrial Engineering, 2022, 174: 108788.
[5] 刘子玲, 谢如鹤, 廖晶, 等. 基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测[J]. 包装工程, 2024, 45(3): 243-250.
LIU Ziling, XIE Ruhe, LIAO Jing, et al. Cold chain logistics demand forecast for fresh agricultural products like fruit and vegetable in Guangzhou City based on gray regression model[J]. Packaging Engineering, 2024, 45(3): 243-250.
[6] 常祎妹, 林忆婷, 丁天明. 基于灰色马尔科夫模型的温州港货物吞吐量预测[J]. 重庆交通大学学报(自然科学版), 2024, 43(11): 60-67.
CHANG Yimei, LIN Yiting, DING Tianming. Forecast of cargo throughput of Wenzhou port based on gray Markov model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(11): 60-67.
[7] 薛蓉娜, 张明敏, 南玉婷, 等. 基于GRU深度学习算法的日均快递业务量预测模型[J]. 统计与决策, 2021, 37(13): 176-179.
XUE Rongna, ZHANG Mingmin, NAN Yuting, et al. Prediction model of daily average express business volume based on GRU deep learning algorithm[J]. Statistics & Decision, 2021, 37(13): 176-179.
[8] RAY S, LAMA A, MISHRA P, et al. An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique Image 1[J]. Applied Soft Computing, 2023, 149: 110939.
[9] 黄宝静, 马骏, 余元玲. 基于SARIMA-RF组合模型的西安中欧班列预测及发展对策[J]. 重庆交通大学学报(自然科学版), 2024, 43(10): 90-96.
HUANG Baojing, MA Jun, YU Yuanling. Forecasting and development strategies of Xian China railway express based on the SARIMA-RF combination model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(10): 90-96.
[10] 周国华, 陈德捷, 周芳汀, 等. 高速铁路与公路客运竞争的市场分担率模型研究[J]. 铁道学报, 2020, 42(1): 1-8.
ZHOU Guohua, CHEN Dejie, ZHOU Fangting, et al. Research on market share rate models of passenger transport competition between high-speed rail and road[J]. Journal of the China Railway Society, 2020, 42(1): 1-8.
[11] 程谦, 朱晓宁, 卢万胜. 中长运距城际旅客出行方式选择行为模型——以高铁、民航为例[J]. 重庆交通大学学报(自然科学版), 2021, 40(7): 39-45.
CHENG Qian, ZHU Xiaoning, LU Wansheng. Travel mode choice behavior model of intercity passengers with medium and long haul—A case study of high-speed railway and air transport[J]. Journal of the China Railway Society, 2021, 40(7): 39-45.
[12] 伍平. 区域快递需求预测研究[D]. 北京: 北京交通大学, 2019.
WU Ping.Research on Demand Forecasting of Regional Express Delivery [D]. Beijing: Beijing Jiaotong University, 2019.
[13] 李书琴. 安徽省快递需求量预测研究[D]. 合肥: 合肥工业大学, 2020.
LI Shuqin. Research on the Forecast of Express Delivery Demand in Anhui Province [D]. Hefei: Hefei University of Technology, 2020.
[14] 孙宗胜, 帅斌, 许旻昊. 低碳背景下快捷货物各运输方式间临界运距研究[J]. 交通运输系统工程与信息, 2023, 23(6): 11-21.
SUN Zongsheng, SHUAI Bin, XU Minhao.Critical transportation distance analysis for express goods transportation modes considering low carbon emissions[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(6): 11-21.
[15] 陈书莹. 高铁快运需求预测研究——以北京—上海城市配送为例[D]. 北京: 北京交通大学, 2022.
CHEN Shuying. Research on Demand Forecast of High-Speed Rail Express—Taking Beijing-Shanghai Urban Distribution as an Example[D]. Beijing: Beijing Jiaotong University, 2022. |