中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (8): 66-74.DOI: 10.3969/j.issn.1674-0696.2025.08.09

• 交通+大数据人工智能 • 上一篇    

基于灰色-BP神经网络的高铁快运量预测

杨向飞,陈钰   

  1. (兰州交通大学 交通运输学院,甘肃 兰州 730070)
  • 收稿日期:2024-08-10 修回日期:2025-02-25 发布日期:2025-09-05
  • 作者简介:杨向飞(1983—),男,甘肃天水人,副教授,博士,主要从事物流经济方面的研究。E-mail:yangxfei06@163.com
  • 基金资助:
    中铁集装箱公司科技研究开发项目(PAXX31220011)

Prediction of High-Speed Rail Express Transportation Volume Based on Gray-BP Neural Network

YANG Xiangfei, CHEN Yu   

  1. (School of Traffic & Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China)
  • Received:2024-08-10 Revised:2025-02-25 Published:2025-09-05

摘要: 随着绿色物流的推进,“高铁+快递”货运模式的应用价值逐渐凸显,其运量的精准预测对于铁路运力优化具有现实意义。以甘青宁地区为例,通过灰色关联度分析法从15个初始指标中筛选出关键影响因素,构建了基于灰色-BP神经网络的组合预测模型。研究结果表明:相较于GM(1,1)和ARIMA模型,该组合模型的预测精度提升显著;通过建立包含经济性、时效性、环保性等7个维度的Logit模型,揭示了高铁快运分担率随运距变化的倒U型曲线特征,优势运距区间为400~1 000 km;基于上述模型,测算出该区域未来三年的高铁快运量预测值,为铁路部门运力配置提供数据支撑。

关键词: 交通运输工程;高铁快运;灰色-BP神经网络;快运量预测;高铁分担率

Abstract: With the advancement of green logistics, the “high-speed rail + express delivery” freight model has demonstrated growing application value, and the accurate prediction of its transportation volume holds practical significance for optimizing railway transportation capacity. Taking the Gansu-Qinghai-Ningxia region as an example, the grey relational analysis method was employed to screen out key influencing factors from 15 initial indicators, and a combined prediction model based on grey-BP neural networks was constructed. The research results show that compared with GM (1,1) and ARIMA models, the combined model shows a significant improvement in prediction accuracy. An inverted U-shaped curve characterizing high-speed rail's sharing rate changing with transportation distances was revealed by establishing a Logit model incorporating seven dimensions such as economy, timeliness and environmental protection. And the advantageous transportation distance range is 400~1 000 km. Based on these models, the predicted values of high-speed rail express transportation volume for this region over the next three years are calculated out, providing data support for the allocation of transportation capacity for the railway department.

Key words: traffic and transportation engineering; high-speed rail express transportation; gray-BP neural network; express transportation volume prediction; high-speed rail sharing rate

中图分类号: