[1] 崔建勋, 要甲, 赵泊媛. 基于深度学习的短期交通流预测方法综述[J]. 交通运输工程学报, 2024, 24(2): 50-64.
CUI Jianxun, YAO Jia, ZHAO Boyuan. Review on short-term traffic flow prediction methods based on deep learning[J].Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64.
[2] 张阳, 王梓良, 姚芳钰, 等. 融合滞后极限学习机的IDBiLSTM短时交通流预测[J]. 重庆交通大学学报(自然科学版), 2024, 43(6): 39-46.
ZHANG Yang, WANG Ziliang, YAO Fangyu, et al. IDBiLSTM short-term traffic flow prediction with fused hysteretic extreme learning machine[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(6): 39-46.
[3] 倪庆剑, 彭文强, 张志政, 等. 基于信息增强传输的时空图神经网络交通流预测[J]. 计算机研究与发展, 2022, 59(2): 282-293.
NI Qingjian, PENG Wenqiang, ZHANG Zhizheng, et al. Spatial-temporal graph neural network for traffic flow prediction based on information enhanced transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293.
[4] XU Chengpei, LIN Youfang, GUO Shengnan, et al. Dynamic spatial-temporal aware graph neural network for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8869-8881. DOI:10.1109/TITS. 2023.3264471.
[5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems (NeurIPS).2017:5998-6008.DOI:10.48550/arXiv.1706.03762.
[6] GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[7] MLLER M. Dynamic time warping[M]//Information Retrieval for Music and Motion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 69-84.
[8] LI Mengzhang, ZHU Zhanxing. Spatial-temporal fusion graph neural networks for traffic flow forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4189-4196.
[9] BAI Lei, YAO Lina, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]// Advances in Neural Information processing Systems(NeurIPS). 2020, 33: 17804-17815. DOI: 10.48550/arXiv. 2007.02842.
[10] WANG Zehong, LI Qi, YU Donghua. TPGNN: Learning high-order information in dynamic graphsvia temporal propagation[EB/OL]. 2022: 2210.01171. https://arxiv.org/abs/2210.01171v2.
[11] CHOI J, CHOI H, HWANG J, et al. Graph neural controlled differential equations for traffic forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6): 6367-6374.
[12] YE Xue, FANG Shen, SUN Fang, et al. Meta graph transformer: A novel framework for spatial-temporal traffic prediction[J].Neurocomputing, 2022, 491: 544-563.
[13] XU Mingxing, DAI Wenrui, LIU Chunmiao, et al. Spatial-temporal transformer networks for traffic flowforecasting[EB/OL].2020:2001.02908.https://arxiv.org/abs/2001.02908v2.
[14] WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event CA USA. ACM, 2020: 753-763.
[15] JIANG Jiawei, HAN Chengkai, ZHAO Wayne Xin, et al. Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(4): 4365-4373. |