中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (8): 99-107.DOI: 10.3969/j.issn.1674-0696.2025.08.13

• 交通+大数据人工智能 • 上一篇    

长距离双尺度的Transformer短时交通流预测模型

张建华,温政龙   

  1. (东北林业大学 土木与交通学院, 黑龙江 哈尔滨 150040)
  • 收稿日期:2024-09-05 修回日期:2024-12-26 发布日期:2025-09-05
  • 作者简介:张建华(1973—),男,黑龙江牡丹江人,副教授,博士,主要从事交通流及智能交通方面的研究。E-mail:jhzhang609@163.com
  • 基金资助:
    黑龙江省重点研发计划项目(JD22A014);黑龙江省自然科学基金项目(YQ2022E003)

Long-Distance and Dual-Scale Transformer Short-Term Traffic Flow Prediction Model

ZHANG Jianhua, WEN Zhenglong   

  1. (School of Civil Engineering & Traffic, Northeast Forestry University, Harbin 150040, Heilongjiang, China)
  • Received:2024-09-05 Revised:2024-12-26 Published:2025-09-05

摘要: 交通流预测作为智能交通系统的核心技术,其核心挑战在于如何有效建模交通数据中复杂的时空依赖性。当前主流模型(基于图神经网络和注意力机制)存在两大局限:① 节点相似度计算受交通波动的时间错位影响,导致具有延迟传播特性的相似节点被误判;② 空间特征提取未能协同捕获交通流的宏观规律(如周期性出行模式)与微观动态(如突发拥堵、 交通事故等)。基于此,提出了LDFormer模型,引入动态时间规整(DTW)算法重构节点相似性度量,消除了传播延迟导致的时空偏差;同时设计了双通道空间建模机制,通过Mglo、 Mmic可学习掩码矩阵分别对注意力生成的空间依赖关系进行宏观-微观特征的捕捉。通过3个基准数据集上的实验表明:该模型显著优于现有的时空预测方法。

关键词: 交通工程; 交通流预测; 双尺度; 注意力机制; 时间序列聚类

Abstract: Traffic flow prediction, as a core technology of intelligent transportation systems (ITS), faces the fundamental challenge of effectively modeling complex spatio-temporal dependencies in traffic data. Current mainstream models (based on graph neural networks and attention mechanisms) have two key limitations. Firstly, node similarity computation is affected by temporal misalignment in traffic fluctuations, causing misjudgment of similar nodes with delayed propagation characteristics. Secondly, spatial feature extraction fails to jointly capture macro-level patterns (e.g., periodic travel patterns) and micro-level dynamics (e.g., sudden congestion, traffic accidents) in traffic flows. To address these issues, LDFormer model was proposed, which introduced dynamic time warping (DTW) algorithm to reconstruct node similarity measurement, eliminating spatio-temporal deviations caused by propagation delays. Meanwhile, a dual-path spatial modeling mechanism was designed. Macro-micro characteristics of the attention-generated spatial dependencies were respectively captured by learnable mask matrices (Mglo and Mmic). Experiments on three benchmark datasets demonstrate that LDFormer model significantly outperforms existing spatio-temporal prediction methods.

Key words: traffic engineering; traffic flow prediction; dual-scale; attention mechanism; time series clustering

中图分类号: