中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (10): 19-28.DOI: 10.3969/j.issn.1674-0696.2025.10.03

• 道路与铁道工程 • 上一篇    

双向特征融合与聚焦损失的轨道异物侵限检测研究

沈瑜,李博昊   

  1. (兰州交通大学 电子与信息工程学院,甘肃 兰州 730070)
  • 收稿日期:2024-08-19 修回日期:2024-10-21 发布日期:2025-11-06
  • 作者简介:沈瑜(1982—),女,山东济宁人,教授,博士,主要从事交通模式识别方面的研究。E-mail:18609311366@163.com 通信作者:李博昊(1999—),男,陕西西安人,硕士研究生,主要从事交通目标检测方面的研究。E-mail:18092251577@163.com
  • 基金资助:
    国家自然科学基金项目(61861025, 62241106);智能化隧道监理机器人项目(中铁科研院(科研)字2020-KJ016-Z016-A2);四电BIM工程与智能应用铁道行业重点实验室开放项目(BIMKF-2021-04)

Orbital Foreign Object Intrusion Limit Detection Based on Bidirectional Feature Fusion and Focusing Loss

SHEN Yu, LI Bohao   

  1. (School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China)
  • Received:2024-08-19 Revised:2024-10-21 Published:2025-11-06

摘要: 针对轨道异物侵限检测任务中存在目标识别精度不高和检测实时性差的问题,提出了一种双向特征融合与聚焦损失相结合的轨道异物侵限检测模型。采用轻量级S-GhostNet作为主干网络对特征进行提取,以降低计算复杂度并提高处理速度;设计了一种双向特征融合结构(Sim-DFPN),通过引入无参数注意力机制,使模型更加关注于目标区域的特征信息,有效抑制无效背景噪声的干扰,并增强不同层级之间信息的流动性。此外,为了进一步提升检测性能,还对IOU损失进行重构,采用线形间隔方法设计了一种基于自适应聚焦边缘的损失函数Focaler EIoU,对轨道异物侵限数据集进行了实验测试。研究结果表明:所提出的网络在该数据集上的检测精度达到了90%,模型大小仅为55 MB,每秒处理帧数为79帧。

关键词: 铁路工程; 轨道异物; 轻量化; 双向特征融合; 注意力机制; 聚集损失

Abstract: To address the issues of low target recognition accuracy and poor detection real-time performance in the task of railway foreign object intrusion limit detection, an orbital foreign object intrusion limit detection model combining bidirectional feature fusion with focusing loss was proposed. The lightweight S-GhostNet was used as the backbone network to extract features, aiming to reduce computational complexity and enhance processing speed. A bidirectional feature fusion structure (Sim-DFPN) was designed. The non-parametric attention mechanism was introduced to enable the model to focus more on the feature information of the target region, which effectively suppressed interference from invalid background noise and enhanced the flow of information between different levels. Furthermore, in order to further improve detection performance, the intersection over union (IoU) loss was restructured. A linearly spaced method was used to design an adaptive focusing edge loss function, Focaler EIoU, and experiments were conducted on the railway foreign object intrusion limit dataset. The research results show that the proposed network achieves a detection accuracy of 90% on this dataset, with a model size of only 55 MB and a frame rate of 79 frames per second.

Key words: railway engineering; orbital foreign objects; lightweight; bidirectional

中图分类号: