[1] GUAN Mingyang, WEN Changyun, SHAN Mao, et al. Real-time event-triggered object tracking in the presence of model drift and occlusion[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2054-2065.
[2] LI Chuan, XIE Zhengyu, QIN Yong, et al. A multi-scale image and dynamic candidate region-based automatic detection of foreign targets intruding the railway perimeter[J]. Measurement, 2021, 185: 109853.
[3] HE Deqiang, YAO Zikai, JIANG Zhou, et al. Detection of foreign matter on high-speed train underbody based on deep learning[J]. IEEE Access, 2019, 7: 183838-183846.
[4] 蒋柳鹏, 翁艳君, 雷智鹢. 基于云模型和 TOPSIS 模型的区域综合交通发展水平评价[J]. 重庆交通大学学报(自然科学版), 2024, 43(10): 47-53.
JIANG Liupeng, WENG Yanjun, LEI Zhiyi. Evaluation of regional integrated transport development level based on cloud model and TOPSIS model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(10): 47-53.
[5] 潘义勇, 徐翔宇. 融合数据平衡与贝叶斯优化的交通事故严重程度预测模型[J].重庆交通大学学报(自然科学版), 2024, 43(12): 69-76.
PAN Yiyong, XU Xiangyu. Traffic accident severity prediction model integrating data balance and Bayesian optimization[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(12): 69-76.
[6] NIU Hongxia, HOU Tao. Fast detection study of foreign object intrusion on railway track[J]. Archives of Transport, 2018, 47(3): 79-89.
[7] SILAR Z, DOBROVOLNY M. Objects detection and tracking on the level crossing[M]//NEZ M, NGUYEN N T, CAMACHO D, et al, eds. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 245-255.
[8] SALMANE H, KHOUDOUR L, RUICHEK Y. A video-analysis-based railway-road safety system for detecting hazard situations at level crossings[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 596-609.
[9] KROMP F, FISCHER L, BOZSAKY E, et al. Evaluation of deep learning architectures for complex immunofluorescence nuclear image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(7): 1934-1949.
[10] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.
ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654.
[11] YE Tao, ZHANG Xi, ZHANG Yi, et al. Railway traffic object detection using differential feature fusion convolution neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1375-1387.
[12] 王瑞, 李霄峰, 史天运, 等. 基于视频深度学习的铁路周界入侵检测算法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 61-68.
WANG Rui, LI Xiaofeng, SHI Tianyun, et al. Railway perimeter intrusion detection algorithms based on video deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 61-68.
[13] WANG Tiange, ZHANG Zijun, TSUI K L. A deep generative approach for rail foreign object detections via semi-supervised learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 459-468.
[14] DUAN Mengfei, MAO Liang, LIU Ruikang, et al. Unified model based on reinforced feature reconstruction for metro track anomaly detection[J]. IEEE Sensors Journal, 2024, 24(4): 5025-5038.
[15] 刘力, 苟军年. 基于YOLO v4的铁道侵限障碍物检测方法研究[J]. 铁道科学与工程学报, 2022, 19(2): 528-536.
LIU Li, GOU Junnian. Research on detection method of railway intrusion obstacles based on YOLO v4[J]. Journal of Railway Science and Engineering, 2022, 19(2): 528-536.
[16] 叶涛, 赵宗扬, 郑志康. 基于LAM-Net的轨道侵入界异物自主检测系统[J]. 仪器仪表学报, 2023, 43(9): 206-218.
YE Tao, ZHAO Zongyang, ZHENG Zhikang. Research on the autonomous detection system for railway intrusion obstacles based on LAM-Net[J]. Chinese Journal of Scientific Instrument, 2023, 43(9): 206-218.
[17] 罗意平, 宇文天, 万政良, 等. 智轨列车基于稀疏点云和图像的车辆识别技术[J]. 铁道科学与工程学报, 2021, 18(9): 2444-2451.
LUO Yiping, YUWEN Tian, WAN Zhengliang, et al. Recognition of vehicles based on sparse point cloud and image for autonomous rail rapid transit[J]. Journal of Railway Science and Engineering, 2021, 18(9): 2444-2451.
[18] 周薇娜, 刘露. 复杂场景下多尺度船舶实时检测方法[J]. 电信科学, 2022, 38(10): 67-78.
ZHOU Weina, LIU Lu. Multi-scale ship real-time detection method in complex scene[J]. Telecommunications Science, 2022, 38(10): 67-78.
[19] YANG Lingxiao, ZHANG Ruyuan, LI Lida, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks[C]// International Conference on Machine Learning. PMLR, 2021: 11863-11874.
[20] ZHAO Chunhui, WANG Jinpeng, SU Nan, et al. Low contrast infrared target detection method based on residual thermal backbone network and weighting loss function[J]. Remote Sensing, 2022, 14(1): 177.
[21] DU Dawei, QI Yuankai, YU Hongyang, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]// European Conference on Computer Vision. Cham: Springer, 2018: 375-391.
[22] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2018: 116-131.
[23] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2019: 1314-1324. |