[1] 秦严严,等.交通流分析理论[M].北京:人民交通出版社,2023
Qin Yanyan. Traffic Flow Analysis Theory [M]. Beijing: China Communications Press,2023
[2] 史文婕,孔亚男,刘建,等.深度语义分割算法综述[J].工程机械,2024,55(10):190-197.
SHI Wenjie, KONG Yanan, LIU Jian, et al. Review of deep semantic segmentation algorithms[J]. Construction Machinery,2024,55(10):190-197.
[3] 严毅,邓超,李琳,等.深度学习背景下的图像语义分割方法综述[J].中国图像图形学报,2023,28(11):3342-3362.
YAN Yi, DENG Chao, LI Lin, et al. 2023. Survey of image semantic segmentation methods in the deep learning era[J]. Journal of Image and Graphics, 28(11):3342-3362.
[4] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2018: 801-818.
[5] 李钰, 袁晴龙, 徐少铭, 等. 基于感知注意力和轻量金字塔融合网络模型的室内场景语义分割方法[J]. 华东理工大学学报(自然科学版), 2023, 49(1): 116-127.
LI Yu, YUAN Qinglong, XU Shaoming, et al. Semantic segmentation method of indoor scene based on perceptual attention and lightweight pyramid fusion network model[J]. Journal of East China University of Science and Technology, 2023, 49(1): 116-127.
[6] VAN Quyen T, KIM M Y. Feature pyramid network with multi-scale prediction fusion for real-time semantic segmentation[J]. Neurocomputing, 2023, 519: 104-113.
[7] JAIN J, SINGH A, ORLOV N, et al. Semask: Semantically masked transformers for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 752-761.
[8] QIN Z, LIU J, ZHANG X, et al. Pyramid fusion transformer for semantic segmentation[J]. IEEE Transactions on Multimedia, 2024: 6325741.
[9] 高良鹏,赵博文,简文良. 基于Faster-YOLOv8网络模型的车载交通标志检测算法研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(8): 114-123.
GAO Liangpeng, ZHAO Bowen, JIAN Wenliang. Vehicle-mounted traffic sign detection algorithm based on Faster-YOLOv8 network model[J].Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(8): 114-123.
[10] DING X, ZHANG X, MA N, et al. RepVGG: Making VGG-style convnets great again [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13733-13742.
[11] 谢春丽,梁梓涵. 复杂环境下基于实例分割的车道线检测[J]. 重庆交通大学学报(自然科学版), 2025, 44(4): 79-86.
XIE Chunli,LIANG Zihan. Lane detection based on instance segmentation in complex environment[J].Journal of Chongqing Jiaotong University(Natural Science), 2025, 44(4): 79-86.
[12] GUO M H, LU C Z, HOU Q, et al. Segnext: Rethinking convolutional attention design for semantic segmentation[J]. Advances in Neural Information Processing Systems, 2022, 35: 1140-1156.
[13] HONG Y, PAN H, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[J]. arXiv Preprint arXiv. 2021: 2101.06085.
[14] WAN Q, HUANG Z, LU J, et al. Seaformer: Squeeze-enhanced axial transformer for mobile semantic segmentation[C]//The Eleventh International Conference on Learning Representations. 2023.
[15] JIN Z, HU X, ZHU L, et al. IDRNet: Intervention-driven relation network for semantic segmentation[J]. Advances in Neural Information Processing Systems, 2024, 36: 231010755.
[16] XU Z, WU D, YU C, et al. SCTNet: Single-branch CNN with transformer semantic information for real-time segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(6): 6378-6386.
[17] SHAO H, ZENG Q, HOU Q, et al. Mcanet: Medical image segmentation with multi-scale cross-axis attention[J]. Machine Intelligence Research, 2025, 22(3): 437-451. |