[1] 叶宝林,戴本岙,张鸣剑,等.基于图卷积网络的交通流预测方法综述[J].南京信息工程大学学报,2024,16(3):291-310.
YE Baolin, DAl Benao, ZHANG Mingjian, et al. A survey of traffic flow prediction based on graph convolutional networks[J]. Journal of Nanjing University of Information, 2024, 16(3): 291-310.
[2] LI Cong, XU Pei. Application on traffic flow prediction of machine learning in intelligent transportation[J]. Neural Computing and Applications, 2021, 33(2): 613-624.
[3] 张召悦,张红波.基于ARMA-AE-LSTM模型的进场交通流预测方法[J].科学技术与工程,2024,24(27):11919-11927.
ZHANG Zhaoyue, ZHANG Hongbo. Approach traffic flow prediction method based on ARMA-AE-LSTM model[J]. Science Technology and Engineering, 2024, 24(27): 11919-11927.
[4] 李磊,张青苗,赵军辉,等.基于改进CNN-LSTM组合模型的分时段短时交通流预测[J].应用科学学报,2021,39(2):185-198.
LI Lei, ZHANG Qingmiao, ZHAO Junhui, et al. Short-term traffic flow prediction method of different periods based on improved CNN-LSTM[J]. Journal of Applied Sciences, 2021, 39(2): 185-198
[5] LIU Yanbei, WANG Qi, WANG Xiao, et al. Community enhanced graph convolutional networks[J]. Pattern Recognition Letters, 2020, 138: 462-468.
[6] LAN Shiyong, MA Yitong, HUANG Weikang, et al. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting[C]// International Conference on Machine Learning. [s.l.]:PMLR, 2022: 11906-11916.
[7] DIAO Zulong, WANG Xin, ZHANG Dafang, et al. Dynamic spatial-temporal graph convolution neural networks for traffic forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence, California, USA:AAAI Press, 2019: 890-897
[8] ZONOOZI A, KIM J J, LI X L, et al. Periodic-CRN: A convolutional recurrent model for crowd density prediction with recurring periodic patterns[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm:AAAI Press, 2018: 3732-3738.
[9] ZHANG Yulin, SHANG Ke, CUI Zhiwei, et al. Research on traffic flow prediction at intersections based on DT-TCN-attention [J]. Sensors, 2023, 23(15): 6683.
[10] 祁舒畅,刘起东,刘超越,等.GA2T:结合图注意力网络的交通流预测模型[J].计算机辅助设计与图形学学报,2023,35(11):1780-1788.
QI Shuchang, LIU Qidong, LIU Chaoyue, et al. GA2T: A traffic flow prediction model combined with graph attention networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(11): 1780-1788.
[11] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018: 3634-3640.
[12] GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. California, USA:AAAI Press, 2019: 922-929.
[13] WU Zonghan, PAN Shirai, LONG Guodong, et al. Graph wave net for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao:AAAI Press, 2019: 1907-1913. |