中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 1994, Vol. 13 ›› Issue (4): 111-117.

• • 上一篇    下一篇

基于神经网络的汽车故障智能诊断系统研究

杨雷1,周玲玲2   

  1. 1.重庆交通学院管理系;2. 重庆教育学院物理系
  • 收稿日期:1993-12-29 修回日期:1994-08-02 出版日期:1994-12-15 发布日期:2015-04-15
  • 作者简介:杨雷,男,33岁,博士

A Study on Intelligent Vehicle Fault Diagnosis System ANN-based

Yan Lei1,zhou Lingling 2   

  1. 1.Chongqing Jiaotong Institute;2.Chongqing Education College
  • Received:1993-12-29 Revised:1994-08-02 Online:1994-12-15 Published:2015-04-15

摘要: 本文描述了基于人工神经网络的汽车故障智能诊断系统,提出了系统的自学习算法;根据汽车发动机故障的层次的特征,建立了系统的网络模型;在对比汽车故障诊断专家系统基础上,阐述了神经网络系统在知识表示与推理过程中的特点和优势。本文在微机上开发了包含两层隐含层的一个基于神经网络的汽车故障智能诊断系统原形,在24组训练数据500次循坏训练后,实验表示该系统诊断正确率为90%。

关键词: 故障诊断, 智能系统, 人工神经网络, 专家系统

Abstract: A intellisent vehicle faul diagnosis system ANN-based has been developed and related self-learn-ing algorithm of the syStem has been given Comparing with ES of vehicle fault diagnosis,the ANN-based dlagnosis system for Vehicle fault is better in Knowledge representation and inference procedureA actual ANN-based intelligent diagnosis system for vehicle motor faults has been designed,which in-cludes two hidden layers,The network has been trained for 500 times using 24 groupe of trainin8 vec-tor pairs,the results show that the success rate for fault diagnosis is more than 90%;

Key words: fault diagnosis, intelligent system, artifical neural network, expert system

中图分类号: