中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2007, Vol. 26 ›› Issue (增刊1): 126-128.

• • 上一篇    下一篇

基于混沌蚁群算法的最短路径选择研究

吴霜华,付洋,葛亮   

  1. 重庆交通大学,重庆 400074
  • 收稿日期:2007-06-08 出版日期:2007-07-15 发布日期:2015-05-18
  • 作者简介:吴霜华(1979—),女,黑龙江龙江县人,硕士研究生,研究方向:智能交通.E-mail:eggontree@yahoo.com.cn
  • 基金资助:
    2006年重庆市建委项目(渝建[2006]187号67项)

Study on Shortest Path Search Method Based on Chaos Ant Colony Optimization

WU Shuang-hua,FU Yang,GE Liang   

  1. Chongqing Jiaotong University,Chongqing 400074,China
  • Received:2007-06-08 Online:2007-07-15 Published:2015-05-18

摘要: 如何解决最短路径选择问题一直是城市交通流诱导系统的关键之一.基于群体仿生理论的蚁群算法是解决此 问题的一种方法,针对采用蚁群算法进行最短路径选择时易出现的陷入局部最优解问题,引入混沌理论,采用混沌 蚁群算法利用混沌初始化进行改善个体质量和利用混沌扰动避免在蚁群算法搜索过程中陷入局部极值,同时降低 了蚁群算法的时问复杂度,从而更好的解决了最短路径选择问题.

关键词: 交通诱导, 混沌蚁群算法, 最短路径

Abstract: Searching shortest path is one of the most important issues of Trafic Route Guidance System.Chaos Ant Colony optimization is a kind of po pulation based on bionic algorithm,which is one of the methods for the problem.Because the ant colony algorithm is easy to drop into local optima as searching the shortest path,a chaotic search algorithm is embedded into the modified venison of special ant cdony optimization algorithm which is called Chaos Ant Colony Opamization(CACO). The basic principle of CPSO algorithm is that chaos initialization should be adopted to improve individual quality and chaos perturbation should be utilized to avoid the search being trapped in local optimum.It makes the time complexity of the ant ACO going down,and is a good solution to the problem of searching shortest path.

Key words: Trafic Route Guidance System, Chaos Ant Colony Optimization, shortest path

中图分类号: