中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2010, Vol. 29 ›› Issue (3): 437-440.

• • 上一篇    下一篇

基于多尺度分析与神经网络的交通流预测

黄美灵1,2,陆百川1,谭伟1   

  1. 1.重庆交通大学交通运输学院, 重庆 400074; 2.交通运输部公路科学研究院北京新桥技术发展有限公司, 北京 100101
  • 收稿日期:2009-09-07 修回日期:2009-10-10 出版日期:2010-06-15 发布日期:2015-01-22
  • 作者简介:黄美灵(1986—) , 男, 湖南益阳人, 硕士研究生, 研究方向: 交通信息工程及控制。E-mail:humeli317@163.com。
  • 基金资助:
    交通运输部科技项目( 2008-319-814-060 )

Traffic Flow Prediction Based on Multi-scale Analysis and Neural Network

HUANG Mei-ling1,2,LU Bai-chuan1,TAN Wei1   

  1. 1.School of Traffic & Transportation Engineering,Chongqing Jiaotong University,Chongqing 400074,China;2.Beijing Xinqiao Technology Development Co.Ltd,Research Institute of High way Ministry of Transport,Beijing 100101,China
  • Received:2009-09-07 Revised:2009-10-10 Online:2010-06-15 Published:2015-01-22

摘要: 针对实际交通系统时变复杂和变化的不确定性所带来的交通流量随机因素影响大、非线性强、规律性不明显 的特征;采用小波多尺度分解的方法,将含有综合信息的时间序列分解为多个分量特征不同的时间序列,然后采用 神经网络对各个分量分别进行预测,最后用实测数据进行了验证分析。结果表明,基于多尺度分析与神经网络预 测模型比单神经网络预测模型预测精度高,可用于交通流的实时动态预测。

关键词: 交通流预测, 多尺度分析, 神经网络, 仿真

Abstract: Aiming at characteristics of nonlinearity, strong interference and no obvious regularity of traffic flow caused by the complexity and uncertainty of time variance in current traffic system, a new approach is proposed for traffic flow prediction. Firstly, the traffic flow sequence made of different frequencies is decomposed into low and high frequencies in the multi-resolution analysis and the trend components are restored according to the reconstructing principle of wavelet coefficients. Secondly, the artificial neural network is used to forecast these coefficients respectively. Finally, the real detecting traffic data are used to testify the precision of the model.The results show that the forecast model based on multi-scale analysis and neural network has higher accuracy than the traditional artificial neural network model does, and this new model can be used in the dynamic forecast of traffic flow in real time.

Key words: traffic flow prediction, multi-scale analysis, artificial neural network, simulation

中图分类号: