Ultimate Bearing Capacity of Combined Joints of Upper Bearing Beam-Arch
Composite Rigid Frame Based on Damage Plasticity Constitutive Model
DING Yanchao1, XIANG Zhongfu1, LI Yayong2, ZHANG Xuesong1, ZHOU Yin1
(1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. China Construction Tunnel Co., Ltd., Chongqing 401320, China)
Abstract:In order to solve the complex force behavior problem of the combined beam-arch joints of long-span upper bearing beam-arch composite rigid frame, the ultimate bearing capacity of the combined beam-arch joints was investigated by the nonlinear analysis method of the prestressed reinforced concrete materials, which was based on Abaqus damage plastic constitutive model. The research results indicate that: at the intersection of beam and arch under 18 unfavorable load conditions, the maximum positive bending moment combination of the upper chord beam at the combined joints is the most unfavorable and controlling load case, and the ultimate bearing factor of the combined beam-arch joints under the most unfavorable load condition is 2.012, which shows that the coefficient of ultimate bearing capacity is greater than 1.4 and has certain safety reserves. The failure path of the beam-arch joints is as follows: from the tensile failure of the top chord beam bottom slab concrete, with the increase of load, the failure surface gradually extends to the upper chord web, and finally the upper chord beam structure is broken. A method based on Von-Mises stress similarity tracing was proposed to simulate mechanical boundary conditions of solid elements effectively. The equation to judge the internal force balance of the node was given, the influence factor of internal force balance η was proposed. The corresponding threshold range of the influence factor was given by comparing the data, which quantitatively explained the reason why the internal force state of the local strut system model and the whole model could not be the same.
[1] 周银,张雪松,丁艳超.无应力状态法在大跨径拱桥施工中的应用[J].重庆交通大学学报(自然科学版),2018,37(8):6-10.
ZHOU Yin, ZHANG Xuesong, DING Yanchao.Application of stress-free state method in long-span arch bridge construction[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(8) :6-10.
[2] 彭元诚, 周水兴, 徐略勤. 空腹式PC连续刚构桥结构设计参数经济性比较[J]. 中外公路, 2017, 37(6) :151-155.
PENG Yuancheng, ZHOU Shuixing, XU Lueqin. Economic comparison of structural design parameters of prestressed concrete open-web continuous rigid frame bridges[J]. Journal of China & Foreign Highway, 2017, 37(6) :151-155.
[3] 李松, 强士中, 唐英. 钢筋混凝土拱桥极限承载力的参数研究[J]. 西南交通大学学报, 2007, 42(3) :293-298.
LI Song, QING Shizhong, TANG Ying. Parametric investigation of ultimate bearing capacity of reinforced concrete arch bridges[J]. Journal of Southwest Jiaotong University, 2007, 42(3) :293-298.
[4] XIE Kaizhong, WANG Hongwei, PANG Jinhao. Study of the ultimate bearing capacity of concrete-filled steel tube K-Joints[J]. KSCE Journal of Civil Engineering, 2019, 23(5) :2254-2262.
[5] 陈再谦,蒲黍絛,郭果,等.微型钢管混凝土构件抗弯性能数值模拟研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(1): 72-79.
CHEN Zaiqian, PU Shutao, GUO Guo, et al. Numerical simulation on the bending properties of micro CFST members[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(1):72-79.
[6] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the Peoples Republic of China. Code for Design of Concrete Structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011.
[7] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67.
NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67
[8] 辛景舟, 周建庭, 肖阳剑, 等. 混凝土结构材料非线性本构参数识别算法研究[J]. 材料导报, 2018, 32(8): 2743-2749.
XIN Jingzhou, ZHOU Jianting, XIAO Yangjian, et al. Research on parameters identification algorithm for concrete nonlinearity constitutive model[J]. Materials Reports, 2018, 32(8): 2743-2749.
[9] 方秦, 还毅, 张亚栋, 等. ABAQUS混凝土损伤塑性模型的静力性能分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(3): 254-260.
FANG Qin, HUAN Yi, ZHANG Yadong, et al. Investigation into static properties of damaged plasticity model for concrete in ABAQUS[J]. Journal of PLA University of Science & Technology(Natural Science Edition), 2007, 8(3): 254-260.
[10] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8): 127-130.
ZHANG Jin, WANG Qingyang, HU Shouying, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8): 127-130.
[11] 周婷婷, 王罡, 杨洋, 等. Bammann- Chiesa-Johnson粘塑性本构模型的参数识别方法与验证[J]. 材料导报, 2017, 31(3): 75-79.
ZHOU Tingting, WANG Gang, YANG Yang, et al. A comprehensive method of parameter identification and validation for Bammann-Chiesa-Johnson visco-plasticity constitutive model[J]. Materials Reports, 2017, 31(3): 75-79.
[12] 雷拓, 钱江, 刘成清. 混凝土损伤塑性模型应用研究[J]. 结构工程师, 2008, 24(2): 22-27.
LEI Tuo, QIAN Jiang, LIU Chengqing. Application of damaged plasticity model for concrete[J]. Structural Engineers, 2008, 24(2): 22-27.
[13] XIAO Yangjian, CHEN Zengshun, ZHOU Jianting, et al. Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment[J]. Advances in Mechanical Engineering, 2017, 9(9): 1-7.
[14] SARIKAYA A. ERKMEN R E. A plastic-damage model for concrete under compression[J]. International Journal of Mechanical Sciences, 2019, 150(1):584-593.
[15] REN W, SNEED L H, YANG Y. Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model[J]. International Journal of Concrete Structures and Materials, 2015, 9(1): 45-54.
[16] GOU Hongye, PU Qianhui, ZHOU Yang, et al. Arch-to-beam rigidity analysis for V-shaped rigid frame composite arch bridges[J]. Steel and Composite Structures, 2015, 19(2): 405-416.
[17] 勾红叶. 大跨度预应力混凝土V形刚构拱组合桥受力行为研究. [D].成都:西南交通大学, 2010.
GOU Hongye. Study on the Mechanical Behaviors of Long-Span Prestressed Concrete V-Shape Rigid Frame Composite Arch Bridge[D]. Chengdu:Southwest Jiaotong University, 2010.
[18] 黄坤全, 彭旭民. 空腹式连续刚构桥施工过程受力特性分析[J]. 桥梁建设, 2011(3) : 40-43.
HUANG Kunquan, PENG Xumin. Analysis of mechanical behavior of a prestressed concrete open-web continous rigid-frame bridge in construction process[J]. Bridge Construction, 2011(3):40-43.