[1] 庞松.科学推动自动驾驶技术发展与应用——拥抱新技术,迎接新挑战[J].重庆交通大学学报(自然科学版),2021,40(10):119-122.
PANG Song. Science promotes the development and application of autono-mous driving technology—embracing new technologies and meeting new challenges[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021,40(10):119-122.
[2] WANG Dequan, DEVIN C, CAI Qizhi, et al. Deep object centric poli-cies for autonomous driving[C]∥ IEEE International Conference on Robotics and Automation ICRA. IEEE,2019: 8853-8859.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classi-fication with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[4] 夏元天. 基于深度卷积神经网络的图像分类和语义自动标注研究[D]. 昆明:云南师范大学, 2020.
XIA Yuantian. Research on Image Classification and Semantic Automatic Annotation Based on Deep Convolutional Neural Network[D]. Kunming:Yunnan Normal University, 2020.
[5] YANG Liping, ALAN M E, PRASENJIT M, et al. Visually-enabled active deep learning for (geo) text and image classification: A review[J]. ISPRS International Journal of Geo-Information, 2018, 7(2): 65.
[6] KONG Tao, SUN Fuchun, LIU Huaping, et al. Foveabox: Beyound anchor-based object detection[C]∥ IEEE Transactions on Image Processing.IEEE.2020, 29: 7389-7398.
[7] 张庆伍, 关胜晓. 基于 Anchor-free 架构的行人检测方法[J]. 信息技术与网络安全,2020,39(4):43-47.
ZHANG Qingwu, GUAN Shengxiao. Pedestrian detection method based on Anchor-free architecture[J]. Information Technology and Network Security, 2020, 39(4): 43-47.
[8] 郑婷婷, 杨雪, 戴阳. 基于关键点的 Anchor Free 目标检测模型综述[J]. 计算机系统应用,2020,29(8):1-8.
ZHENG Tingting, YANG Xue, DAI Yang. Overview of anchor free target detection models based on key points[J]. Computer Systems & Applications, 2020, 29(8): 1-8.
[9] 刘革,郑叶龙,赵美蓉.基于RetinaNet改进的车辆信息检测[J].计算机应用,2020,40(3):854-858.
LIU Ge, ZHENG Yelong, ZHAO Meirong. Vehicle information detection based on improved RetinaNet[J]. Journal of Computer Applications, 2020, 40(3): 854-858.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]∥ European Conference on Computer Vision. Springer, 2016: 21-37.
[11] 曹诗雨, 刘跃虎, 李辛昭 .基于Fast R-CNN的车辆目标检测[J].中国图象图形学报,2017,22(5):671-677.
CAO Shiyu, LIU Yuehu, LI Xinzhao.Vehicle target detection based on fast R-CNN[J]. Journal of Image and Graphics, 2017, 22 (5):671-677.
[12] BOCKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-08-12]. https:∥arxiv.org/abs/2004.10934v1.
[13] LAW H, DENG J. CornerNet: Detecting objects as paired key points[J]. International Journal of Computer Vision, 2020, 128:642-656.
[14] ZHOU X, WANG D, KRHENBHL P. Objects as points[EB/OL]. (2019-04-16)[2021-08-12]. https:∥arxiv.org/abs/1904.07850.
[15] 刘昱岗,王卓君,刘艳芳,等. 基于双目视觉图像的倒车障碍物检测预处理方法[J].重庆交通大学学报(自然科学版),2018, 37(3):92-98.
LIU Yugang, WANG Zhuojun, LIU Yanfang, et al. Reversing obstacle detection preprocessing method based on binocular vision images [J].Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(3):92-98.
[16] 葛明进,孙作雷,孔薇. 基于Anchor-free的交通场景目标检测技术[J]. 计算机工程与科学, 2020, 42(2):707-713.
GE Mingjin, SUN Zuolei, KONG Wei. Object detection in traffic scenes based on Anchor-free [J].Computer Engineering and Science, 2020,42(2):707-713.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020, 42(2): 318-327.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2016: 770-778.
[19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9): 1904-1916. |